Tuoreimmat

Pöytälaatikkotutkimukset

Pöytälaatikkotutkimukset (8)

Thursday, 10 August 2023 14:21

Lahja, joka sai meteorologit varpailleen

Written by

Takana on yksi viime vuosien meteorologisesti mielenkiintoisimmista kesäsääjaksoista, johon liittyi myös ylenpalttista ja osin tunnepitoista sääuutisointia. Sain mahdollisuuden päästä seuraamaan Lahjan-päivää edeltäviä ennusteita lähietäisyydeltä, pohtimaan rajuilmavaroituksia sekä tapaa, jolla haastavasta tilanteesta viestitään. Seuraavassa yritän valottaa, miksi rajuilmatilanteesta oli syytä nostaa keskimääräistä suurempi haloo.

Mitä ukkospilvien syntyminen vaatii?
Koska ukkospilvien syntyresepti on niin keskeisessä roolissa tässä kertomuksessa, kerrataan lyhyesti, mistä pienet ukkospilvet on tehty. Tästä aiheesta on ollut jokseenkin vakiintunut käsitys maailmansotien jälkeen tehtyjen kenttämittauskampanjoiden jälkeen (muun muassa Byers ja Braham 1948). Tässä yhteydessä on yleensä tapana viitata rajuilmatutkimuksen legendaan Chuck Doswelliin, joka kollegoineen esitteli ainesosapohjaisen ennustaminen konseptin (muun muassa Doswell et al. 1996). Ukkospilvien tapauksessa välttämättöminä synnyn edellytyksinä ovat:

  1. Suotuisa lämpötilan pystyjakauma (mahdollisimman suuri lämpötilaero eli lämpötilavähete esimerkiksi 1 ja 5 km välillä)
  2. Riittävästi alatroposfäärin kosteutta (mahdollisimman suuri absoluuttinen kosteus noin alimmassa 500 metrin kerroksessa)
  3. Kehityksen käynnistävä tekijä (esimerkiksi pinnan tasolla esiintyvä tuulten kohtaamis- eli konvergenssivyöhyke)

Mikäli puhutaan ukkospilvien vaarallisimmista muodoista, listaan voidaan livauttaa neljäs, joskaan ei täysin välttämätön tekijä:
4. Voimakas tuuliväänne maanpinnalta ylöspäin mennessä (väänne voi aiheutua sekä tuulensuunnan että nopeuden muutoksesta)

Tuuliväänteen merkitys ukkospilville on tunnettu yleisellä tasolla jo 1970- tai 1980-luvuilta, jolloin senaikaisella vähäisellä laskentateholla pystyttiin mallikokein löytämään voimakkaan tuuliväänteen yhteys supersolukonvektioon (muun muassa Weisman ja Klemp 1982 ja 1986). Palataan myöhemmin ainesosatarkasteluun, kun käyn läpi, missä asennossa ainesosat olivat Lahjan-päivänä 7.8.2023.

Menemättä niin sanotun ilmapakettimenetelmän yksityiskohtiin, voidaan todeta, että ainesosalistan kaksi ensimmäistä kohtaa paaluttavat ukkospilvien käytettävissä oleva energiamäärän (CAPE - convective available potential energy). Listan kolmannen kohdan mittaaminen ja toteaminen ei ole yhtä suoraviivaista ja tähän liittyviin haasteisiin palataan niin ikään myöhemmin.

Edelleen, ukkospilvien käytettävissä energiamäärä voidaan yhdistää näppärästi tuuliväänteen kanssa, ja tällä tavoin on muodostettu luonnossa tehtyihin havaintoihin ja numerisiin mallinnuksiin perustuvia diagrammeja. Nämä ovat luonteeltaan vain suuntaa antavia, mutta alla yksi Wikipediasta tehty poiminta:


Kuva 1: CAPE-tuuliväännediagrammi, johon merkitty suuntaa antavasti, minkä tyyppisiä ukkospilviä ja rajuilmoja missäkin olosuhteissa syntyy. Alueiden rajoja ei tule tulkita tarkasti ja yhdessä tilanteessa voi esiintyä useita erilaisia ukkospilvien muodostamia kokonaisuuksia. Lähde: https://commons.wikimedia.org/w/index.php?curid=93475898
 

Ainesosia etsimässä
Katsotaan seuraavaksi, miltä 7.8.2023 laaditut ennusteet näyttivät tilannetta edeltävinä päivinä. Alla olevasta kuvasarjasta nähdään, kuinka Suomen lounaispuolella on matalapaineen alue ja samanaikaisesti korkeapaine on muodostunut Suomen itäpuolelle. Näiden välistä on pääse virtaamaan Suomeen hyvin lämmintä ja kosteaa ilmaa kaakosta.

Kuvapaneelin kahdesta ensimmäisestä sarakkeesta nähdään, kuinka 500 ja 700 hPa:n (noin 5 ja 3 km) korkeuksilla ennuste kehittyy tilanteen lähestyessä korkeampien lämpötilojen suuntaan (vasemmassa sarakkeessa vaaleat siniset sävyt ja keskisarakkeessa kellertävät sävyt). Lisäksi mustat viivat eli isohypsit harvenevat, mikä tarkoittaa suoraan tuulen heikkenemistä näillä korkeuksilla. Kolmannessa sarakkeessa puolestaan 925 hPa (noin 1 km) korkeudella runsaimman kosteuden lukemat poistuvat. Lisäksi huomionarvoista on etelästä lähestyvän kuivemman ja viileämmän ilman saapumisen hidastuminen sitä mukaan, kun h-hetki lähenee.Jos pidetään mielessä alussa esitetyt ukkospilvien ainesosat, ennusteissa havaittu kehitys näytti menevän kohti vähemmän räjähdysherkkää (mutta silti huomionarvioista) perusasetelmaa.

Myös ukkospilvien käytettävissä olevaan energiamäärään liittyvä ennuste heijastelee samanlaista yleiskuvaa kuin 925 hPa tason ennuste. Korkeimmat energiamäärät (kirkas vihreä) kattavat lyhyimmässä ennusteessa pienemmän alueen kuin aiemmin, ja lisäksi kylmään rintamaan liittyvä CAPE-alueen reuna ei näytä saapuvan etelästä yhtä nopeassa aikataulussa kuin vanhemmissa ennusteissa.



Kuva 2: ECMWF-mallin ennusteita kolmelta eri laadintahetkeltä. Laadinta-ajat: ylin rivi 6.8.2023 00 UTC, keskirivi 4.8.2023 00 UTC ja alarivi 2.8.2023 00 UTC. Sarakkeet: ensimmäinen vasemmalta 500 hPa isohypsit mustalla ja lämpötila värein (vaalea sininen lämpimämpi), toinen vasemmalta 700 hPa isohypsit mustalla ja lämpötila värein (kellertävät sävyt lämpimämpiä), kolmas vasemmalta 925 hPa absoluuttinen kosteus (tumma sininen kostein), neljäs vasemmalta merenpintapaine mustin viivoin ja CAPE värisävyin (vihreällä suurimmat arvot).

Siirrytään seuraavaksi parviennusteiden maailmaan ja katsotaan parviluotauksia, jotta saadaan käsitys, miten varmalla pohjalla ennuste ilmakehän pystyrakenteesta näyttäisi olevan. Tarkastellaan esimerkkipisteenä Kankaanpäätä Satakunnassa ja vertaillaan perjantaina ja sunnuntaina tehtyjä ennusteita. Huomataan, että tuulijakaumassa ja kosteusprofiilissa erot ovat melko maltillisia. Suurin muutos liittyy ilman kohonneeseen lämpötilaan keskitroposfäärissä - tarkemmin sanottuna 700 ja 600 hPa:n välimaastossa. Muutos vaikuttaa heikentävästi ainesosaan yksi, koska pystysuunnassa vallitseva lämpötilaero eli lämpötilavähete pienenee. Lisäksi 600 hPa tasolle uhkaa muodostua toinen nousuliikettä estävä stabiili kerros 900 hPa:ssa näkyvän kerroksen yläpuolelle.



Kuva 3: Kankaanpään ECMWF-parviluotausten vertailu tefigrammilla. Harmaalla värisävyllä 4.8.2023 klo 00 UTC ja värisävyin 6.8.2023 klo 00 UTC ajon parviluotaus. Oranssilla paksulla viivalla ilmapakettien mahdollinen nousureitti.

Parviennusteesta voidaan myös johtaa parametreja, jotka yhdistävät edellä mainitulla tavalla ennustetut energiamäärät sekä vertikaalituuliväänteen. Alla on esitetty ECMWF-mallin extreme forecast index (EFI) tuuliväänteen ja energian tulolle. EFI kuvaa, kuinka paljon ennustejakauma eroaa ilmastollisesta jakaumasta, jolloin täysin toisistaan erillään olevat jakaumat saavat EFI-arvon 1. Alla olevasta kuvapaneelista nähdään, että ennustejakauma on lähes kokonaan ilmastollisen jakauman yläpuolella. Ero kuitenkin tasoittuu lievästi sunnuntaina laaditussa ennusteessa, mikä johtuu oletettavasti CAPE-ennusteiden maltillistumisesta.



Kuva 4: ECMWF:n extreme forecast index CAPE:n ja tuuliväänteen tulolle. Punainen väri ja lukuarvo 1 tarkoittaa, että parviennusteen jakauma on täysin ilmastollisen jakauman yläpuolella. Vasemmalla 4.8.2023 00 UTC ja oikealla 6.8.2023 00 UTC ajo.

Allekirjoittanut koosti noin 10 vuotta sitten kotimaisten kesäluotausten klimatologian ukkospilvien ainesosille, ja tämä on julkaistu tässä samaisessa blogissa kokonaisuudessaan. Jos ainesosien 1 ja 2 havaitut mittaukset plotataan samalle diagrammille, saadaan oheinen “hauligraafi” (scatter plot). Perjantain ennusteen mukaiset ainesosat on nyt helppo lisätä diagrammille. Jos edeltävästä tarinasta on ollut vaikea päästä jutun juoneen kiinni, tässä vaiheessa alkaa hahmottua syyt, mikä tilanteen meteorologiassa oli niin kiehtovaa.



Kuva 5: Vuosien 1961-2010 Suomen kesäluotausten alatroposfäärin kosteus ja 850-500 hPa lämpötilavähete ja 4.8.2023 mukaisen ennusteen lukuarvot punaisella merkittynä.


Painia epävarmuuksien kanssa
Entäpä se kolmas ainesosa sitten? Edellä esitetystä parviluotauksesta näkyy pieni nökö 600 ja 700 hPa:n välimaastossa. Tämä on viite siitä, että kyseisellä korkeudella lämpötila ei laskekaan ylöspäin mentäessä samaa tahtia kuin alempana. Tälläinen kerros estää (ukkos)pilvien muodostumista tehokkaasti, koska pinnalta kohoava ilma tulee tässä kerroksessa ympäristöään kylmemmäksi, ja nouseva ilmavirtaus heikkenee. Tyypillisesti elokuun aikana nämä inversiokerrokset eivät enää auringon (keskikesästä alentuneen) korkeuskulman vuoksi tahdo mennä rikki, vaan tarvitaan lisäpotkua, jotta ilma pääse tulppaavasta kerroksesta läpi. Useimmiten esimerkiksi kylmän rintaman tuulikonvergenssi tai toisaalla kehittynyt voimakas ukkospilvialue kykenee murtautumaan estävästä kerroksesta läpi.

Yläinversion aiheuttaman epävarmuuden lisäksi loppuviikosta pohdittiin ankarasti, mitkä muut tekijät voisivat estää ukkospilvien esiintymisen Suomessa. Yleensä runsas auringonsäteilyä blokkaava pilvisyys aiheuttaa epävarmuutta, kuten myös edeltävän päivän voimakkaat ukkospilvijärjestelmät ja niiden raadot. Järjestelmätason syvä kostea konvektio kykenee toisinaan muokkaamaan suuremman mittakaavan tapahtumia, jolloin seuraavien päivien ukkospilvien esiintymispaikka ja -aika voivat muuttua huomattavasti. Tällä kertaa suursäätila oli sen kaltainen, että Suomen lounaispuolelle muodostui hyvin voimakas matalapaine, joka muokkasi edellä mainittuja ainesosia kohdalleen. Näin voimakkaan matalapaineen tapauksessa perusasetelman voi odottaa pysyvän ennusteessa useita päiviä lähes muuttumattomana. Oli siis oletettavaa, että Suomi kuuluu alkuviikolla poikkeuksellisen kuuman ja kostean ilmamassan alueeseen, jossa vallitsee voimakas kaakkoinen ilmavirtaus. Ilmamassan sisällä edellä mainittu yläinversio pitäisi huolen siitä, ettei auringonpaistetta estävää pilvisyyttä olisi.

Edeltävän päättelyketjun jälkeen murheeksi näytti jäävän yläinversion lisäksi aikataulukysymykset: miten kaukana etelässä kylmä rintama on ja alkaako kylmä rintama aaltoilla ukkospilvirykelmien vaikutuksesta? Myös se, joutuuko Suomi lämpimässä ilmamassassa lopulta liian syvälle kuivaan ilmaan, oli avointen kysymysten joukossa. Vahinkopotentiaali on näissä tilanteissa mahdollista minimoida vahvalla yläinversiolla sekä aamuisella tai aamupäiväisella saapumisaikataululla. Päivänkierrossa aamut ovat yleensä ajankohtia, jolloin esimerkiksi salama-aktiivisuus laskee, vaikka yön tunteina salamointi olisi vielä ollut kiivasta. Jos lisäksi idästä ja kaakosta saapuisi kuivempaa ilmaa, koko energeettinen alue saattaisi lipua Suomen yli ääntä päästämättä.

Kuten niin usein aktiivisina ukkospäivinä, myös nyt päivystysvuoroissa olevat meteorologit tuskailivat lukuisten epävarmuuksien kanssa. Kuten edeltä tuli ilmi, pöytä oli katettu ukkospilville kaikilla mahdollisilla ja vieläpä harvinaisilla herkuilla, mutta "ruokailijoiden" saapumisesta ei voitu olla täysin varmoja. Ennustetussa mittakaavassa ukkospilvien himoitsemat erikoisherkut kohtaavat Suomessa äärimmäisen harvoin, joten olisi ollut sulaa hulluutta vaieta tilanne kuoliaaksi epävarmuuksien vuoksi. Kuten vuosien varrella on nähty, epävarmuuksista viestiminen julkisuuteen on lähes varmaan tuhoon tuomittu tehtävä eikä se onnistunut tälläkään kertaa. Saatan kirjoittaa rajuilmaviestinnästä vielä erillisen blogimerkinnän jatkoksi tälle kirjoitukselle.

Lahja-paketti avautuu
Viikonlopun kuluessa edellä mainitut epävarmuustekijät alkoivat vähitellen realisoitua siten, että pahin isku ei kohdistuisikaan Suomeen. Kylmä rintama näytti jäävän kauemmas Suomen eteläpuolelle ja sen saapuminen näytti hidastuvan ja osuvan sopivasti tiistaiaamuun. Näin ollen myös voimakkaita ukkospilviä ei pääsisikään Suomen maa-alueille Lahjan-päivän aikana, ja ukkospilviä ohjaava virtaus kuljettaisi valtaosan ukkospilvistä Suomen lounaispuolitse kohti Ruotsia.

Sunnuntain ja maanantain kuluessa Suomessa havaittiin lopulta muutama tuhat maasalamaa, mikä on hyvin keskinkertainen salamamäärä meikäläisinä kesäpäivinä. Sen sijaan raju salamointi painottui eteläiselle Itämerelle, Baltiaan ja Ruotsiin. Kuten oheisista koostekuvista näkyy, Suomen ja lähialueiden salamamäärät olivat sunnuntaina yli 40 000 ja maanantaina yli 50 000 paikannettua maasalamaa. Lisäksi ukkoset aiheuttavat runsaasti salama- ja tuulivahinkoja Ruotsissa ja 5-8 senttimetrin kokoisia jättirakeita Virossa ja Latviassa. Ruotsissa ja Virossa useilla sääasemilla mitattiin 20-30 m/s puhaltaneita ukkospuuskia. Suomessa ukkospuuskat osuivat lähinnä lounaisille merialueille, jossa tuulennopeus pomppasi hetkellisesti myrskylukemiin. Toki tiistaita kohti tuuli voimistui edelleen, kun Ruotsissa ollut matalapaine alkoi toden teolla voimistaa laaja-alaista perusvirtausta Suomessa.



Kuva 6: Suomessa ja lähialueilla havaittu salamointi 6.-7.8.2023. Salamoiden esiintymisaika esitetty eri värein. Lähde: pohjoismainen salamanpaikannusverkko NORDLIS.

Suomen maa-alueilla vahingot painottuivat selvästi tiistaille, kun perusvirtaukseen liittyneet tuulenpuuskat aiheuttivat arviolta yli 1 000 tehtävää pelastustoimelle sekä katkoivat sähköt samanaikaisesti noin 50 000 taloudesta. Varsinaiset ukkospilviin liittyneet vahingot jäivät hyvin paikallisiksi ja määrältään vähäisiksi.


Paljon melua tyhjästä?
Kaikesta nähdystä voisi nopeasti tuomita Suomen meteorologeille punaisen tai vähintään keltaisen kortin liian aggressiivisesta rajuilmaviestinnästä. Miksi Lahja 2023 -nimisestä ennätyslitteästä pannukakusta piti nostattaa niin paljon ääntä? Ennen Lahjan-päivää tilannetta verrattiin elokuun 2010 rajuilmoihin. Oliko tämä hätäistä ja karkeasti liioiteltua puhetta vai oikeasuhtainen arvio?

Edellä esitettiin rajuilmojen ainesosiin liittynyt hauligraafi perjantain ennusteesta verrattuna ainesosailmastoon. Katsotaanpa lopuksi Jokioisten luotausten avulla, minkälaisessa ainesosamaastossa lopulta liikuimme. Vilkaistaan ensin aamu- ja iltapäiväluotausten eroja. Kuvasta nähdään, että kuudessa tunnissa alatroposfäärin kosteus lisääntyy rutkasti, mutta stabiili kerros 700 hPa:n molemmin puolin vahvistuu lämpimän advektion myötä. Lisäksi noin 850 hPa:n tasolla on toinen kehitystä estävä stabiili kerros. Iltayhdeksää kohti kosteusmäärä lähti uudelleen laskuun, minkä myötä 700 hPa:n tienoilla oleva ylempi stabiili kerros alkaa todennäköisesti toimia toisena tulppana kehitykselle. Kun etelästä ei iltapäivän ja alkuillan tunteina ollut tarjolla kehitystä avittavaa rintamavyöhykettä tai ukkospilvirykelmää, runsaiden energiamäärien kohtalona oli jäädä niin sanotusti piippuun.


Kuva 7: Jokioisten luotaukset SkewT-diagrammilla 7.8.2023 06 (vihreä) ja 12 UTC (oranssi). Nouseva mean layer -ilmapaketti paksulla oranssilla viivalla.

Käännetään katse seuraavaksi havaittujen Jokioisten luotausten ainesosiin. Alla näkyy näkyy edeltä tuttu graafi alatroposfäärin kosteudesta ja keskitroposfäärin stabiilisuudesta. Kuvaan on merkitty kaikki 7.8.2023 tehtyjen luotausten havaintopisteet. Kuvasta nähdään välittömästi, että kaikki luotaukset osuvat harvalukuiseen joukkoon diagrammin oikeassa yläkulmassa. Pelkästään kosteutta tarkkailemalla koko 50 vuoden aikasarjasta löytyy ainostaan neljä kosteampaa luotausta. Kun tarkastellaan, missä kesän 2010 Lahja- ja Sylvi-rajuilmat ovat diagrammilla, voidaan vahvistaa aiempi lausuma, että 13 vuoden takaisen elokuun rajuilmat todellakin olivat asetelmaan sopiva mittatikku. Jos verrataan toteumaa kuvaan 5, voidaan nähdä perjantaiseen ennusteeseen liittyneen täpän olleen hyvin lähellä havaittua 12 UTC luotausta.


Kuva 8: Kuten kuva 5, mutta lisättynä 7.8.2023 Jokioisten luotaushavainnot oranssein merkein. Luotausten järjestys on merkitty paksunevin viivoin alkaen sisältäen 00, 06, 09, 12, 15 ja 18 UTC luotaukset. Tilastoiduista tapauksista vuoden 2010 Lahja- ja Sylvi-rajuilmojen luotaukset merkitty erikseen.

Mielenkiinnosta loin vielä hypoteettisen luotauksen siten, että keskitroposfäärin lämpenemistä ei olisi tapahtunut, mutta rajakerroksen kosteus lisääntyisi havaitulla tavalla. Tässä tapauksessa ainoaksi esteeksi olisi jäänyt vaatimaton yläinversio 850 hPa kohdalla, ja MLCAPE-energiamäärä olisi pompannut noin 2 300 jouleen per kilogramma (0-6 km tuuliväänteen ollessa edelleen yli 20 m/s).

Katsotaan vielä lopuksi, mihin 7.8.2023 tilanne osuu USA:n ja Euroopan konvektioilmastoon liittyvillä diagrammeilla. Tätä nykyä referenssiksi mahdollisesti otettavia tutkimuksia on useita, mutta valitaan tällä kerralla mittatikuiksi Taszarek et al. (2020), Pistotnik et al. (2022) ja Battaglioli et al. (2023). Kaikissa tutkimuksissa pohjana on käytetty in situ -havaintoja vaaraa aiheuttavista ukkospilvistä, ja kyseisiä tapauksia vastaavat tiedot ilmakehän tilasta on poimittu ERA-uusanalyyseistä. Battaglioli et al. (2023) tutkivat isoja rakeita, mutta kahdessa muussa tutkimuksessa luupin alla oli myös muita lieveilmiöitä (syöksyvirtaukset ja tornadot).

Kuten kuvasta näkyy, 7.8.2023 tilanne solahtaa kaikissa kolmessa vertailussa vaaralliseen laitaan. Battaglioli et al. (2023) mukaan vastaavissa olosuhteissa on havaittu jopa yli 10 cm kokoisia rakeita. Tällä kertaa tiettävästi isoimmat rakeet satoivat Baltiassa ja olivat kooltaan 8 cm (lähde: ESWD.eu). Vertailussa Pistotnik et al. (2022) ja Taszarek et al. (2020) tekemiin selvityksiin Suomen tapaus on suorastaan jakauman järeässä äärireunassa. Jos palataan vielä takaisin kuvaan 1 ja sijoitetaan 7.8.2023 säätilanne tähän suuntaa antavaan diagrammiin, päädytään keskelle USA:ssa tyypillisiä keväisten supersolujen olosuhteita.


Kuva 9: Vaaraa aiheuttavien konvektiivisten ilmiöiden todennäköisyys CAPE-tuuliväännediagrammilla kolmesta eri tutkimuksesta, joissa meteorologisia olosuhteet on tilastoitu uusanalyysien avulla. Lisäksi oikeassa alakulmassa kuva 1, johon muiden kuvien tapaan lisätty Lahjan-päivän 2023 säätilanne keltaisella tähdellä.


Mitä tästä voi päätellä?

Edellä olevasta tiedosta voi poimia ylös seuraavat päähuomiot:

o Ukkospilvien ainesosat kohtasivat Suomen yllä 7.8.2023 harvinaisella tavalla (muun muassa kosteutta lähes ennätysmäärä).

o Ainesosat loivat ukkospilville erittäin energeettiset olot alueella, johon yhdistyi harvinaisella tavalla huomattavan voimakas tuuliväänne.

o Harvinaiset olot näkyivät korostuneella tavalla ECMWF:n parviennusteessa, joka yhdistää ukkospilvien käytettävissä olevan energiamäärän sekä tuuliväänteen. Parviennusteen jakauma oli lähes kokonaan ilmastollisen jakauman yläpuolella, mikä on sekin varsin harvinaista.

o Vastaavissa oloissa vaaraa aiheuttavia ukkospilviä esiintyy yleisesti muualla Euroopassa sekä USA:ssa, mikä on todennettu useissa tuoreissa tutkimuksissa.

o Tapahtumapäivän aikana esiintyi voimakasta lämmintä advektiota noin 3 km korkeudella, mikä toimi alempana olevan stabiilin ilmakerroksen lisäksi ukkospilvikehitystä estävänä tekijänä.

o Etelästä lähestyneen kylmän rintaman saapuminen hidastui, ja lisäksi Suomi joutui varsin syvälle helleilmamassan sisään. Tämän vuoksi ukkospilvikehitys jäi Suomen eteläpuolelle eikä meille saapunut missään vaiheessa ukkospilviä, jotka olisivat voineet lopulta toimia kehityksen käynnistäjinä. Syntyneet ukkospilvet ajautuivat Baltiasta Itämerelle ja siitä kohti Ruotsia suuntaavalle reitille.

o Kylmän rintaman saapuminen maan eteläosaan tapahtui aamulla, jolloin aurinko ei ollut “ladannut” helleilmamassan sektoriin lisää energiaa.

o Salamointi ja muut ukkospilvien lieveilmiöt koettelivat lähinnä Baltiaa ja Ruotsia sunnuntain ja maanantain aikana, joten tilanne realisoitui pääasiassa Suomen lähialueilla.

Kaiken tämän jälkeen voi kysyä, olivatko varoitukset ja vuolas rajuilmapuhe vailla perusteita? Allekirjoittaneen vahva käsitys on, että meteorologit olisivat toimineet suorastaan rikollisesti, ellei voimakkaiden rajuilmojen mahdollisuudesta olisi puhuttu mitään. Ammattikuntamme saa usein kritiikkiä ylivaroittamisesta, josta meteorologien tuleekin yleisellä tasolla kantaa huolta. Lahjan-päivän 2023 tilanne ei kuitenkaan kuulu tähän kategoriaan, ja tätä voi perustella pelkästään 7.8.2023 vallinneiden olosuhteiden äärimmäisyydellä. Potentiaali hyvin vakaviin ja laajoihin vahinkoihin oli selkeästi olemassa, minkä osoittavat tapahtumat naapurimaissa. Mikäli pahin skenaario olisi toteutunut varoitusten loistaessa poissaolollaan, meteorologeilla ei olisi ollut mitään piilopaikkaa tai mahdollisuutta argumentoida järkevällä tavalla ja oikeutetusti laimeaa varoituslinjaa. Kyseessä olisi ollut pahimman laatuinen epäonnistuminen ennustetyössä ja vieläpä varautumisen näkökulmasta kaikkein haastavimpien sääilmiöiden moukaroidassa suurta osaa maasta.

Suomessa varaudutaan monenlaisten riskien realisoitumiseen, ja sää on kiistämättä yksi näistä. Kaikissa riskeissä on sisäänrakennettuna epävarmuus, jonka kanssa meidän on pakko elää. Lopulta ainoa, mikä merkitsee on se, että yhteiskunnan turvallisuuskriittiset toimijat varautuvat riskeihin oikeasuhtaisesti ja pyrkivät pitämään kriittiset perustoiminnot yllä oli häiriölähde mikä tahansa. Harmi ohi menneestä tai toteutumattomasta rajuilmakokemuksesta tuntui kaikuvan Lahjan-päivän keskusteluissa media-avaruudessa. Ehkä moni kuitenkin ottaa vastaan tämän kokemuksen enemmin kuin menetetyn metsäpalstan, taistelun sähkökatkojen tai vaikkapa rajuilmavahinkojen korvausten hakemisen kanssa.

Viitteet

Byers, H. R., and Braham, R. R., Jr., “Thunderstorm Structure and Circulation.” J. Meteor., 5: 71–86 (1948).

Doswell, C. A. I. I. I., Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11 , 560–581.

Taszarek, M., J. T. Allen, T. Púčik, K. A. Hoogewind, and H. E. Brooks, 2020: Severe Convective Storms across Europe and the United States. Part II: ERA5 Environments Associated with Lightning, Large Hail, Severe Wind, and Tornadoes. J. Climate, 33, 10263–10286, https://doi.org/10.1175/JCLI-D-20-0346.1.

Pistotnik G., P. Groenemeijer, K. Riemann-Campe, and T. Kühne, 2022: STEPCLIM: Severe Thunderstorm Evaluation and Predictability in Climate Models. Preprints, 26th Conference on Severe Local Storms, Nashville TN, American Meteorological Society.

Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.


Weisman, M. L., Klemp, J. B., 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shear.Mon. Wea. Rev.,112, 2479–2498.

 

Monday, 11 January 2016 22:04

Merikarvian lumitykki

Written by

Vuosi 2016 alkoi näyttävällä, joskin valtakunnan tasolla melko vähämerkityksisellä Suomen ennätyksellä. Vuorokauden lumikertymäennätys murskautui Merikarvialla hulppealla marginaalilla. Ilmatieteen laitoksen tilastojen mukaan edeltävät kärkilukemat olivat puolen metrin tienoilla, kun Merikarvialla lunta rymähti taivaalta mojovat 73 cm. Kuten alla oleva tutkasadekertymäkuva osoittaa, runsaan lumisateen alue oli hyvin pienikokoinen, mikä on tämäntapaisissa tilanteissa yleistä. Tapaus on meteorologisesti hyvin mielenkiintoinen ja seuraavassa pureudutaan sen yksityiskohtiin.

Säätutkalla mitattu sademääräkertymä 8.1.2016.

 

Lumitykki ampuu merellistä kosteutta maalle

Merikarvian tapauksen taustalla oleva ilmiö on hyvin tunnettu ja kulkee nimellä lake effect snow. Kutsun tässä kirjoituksessa ilmiötä puoliviihteellisesti lumitykiksi. Kyse on yksinkertaisesti sanottuna tilanteesta, jossa kylmää ilmamassaa virtaa jäättömän vesialueen ylle. Vesialue toimii lämmön ja kosteuden lähteenä, minkä seurauksena kylmä ilmamassa alkaa muuntua. Lopputulos on vähitellen korkeutta kasvavia konvektiopilviä ja lopulta pieniä ja pippurisia lumikuuropilviä. Oheinen kuva selventää muuntumisprosessia.

Lumikuuropilvien muodostuminen kylmän ilmavirtauksen saapuessa jäättömälle vesialueelle. Lähde: UCAR/COMET

Meteorologisesti tarkasteltuna reunaehtoina toimivat samat kolme ainesosaa kuin kesäisille kuuropilville: alatroposfäärin kosteus, instabiilisuus sekä nosto. Ensimmäinen ainesosa on peräisin suurelta osin alustasta eli jäättömästä vesialueesta. Toinen ainesosa muovautuu ajan kanssa, kun kylmä ilmamassa lämpenee alustan vaikutuksesta. Näin lämpötilaero pintakerroksen ja 1-2 km korkeustason välillä kasvaa. Tyypillisesti tämän ilmakerroksen lämpötilavähete muuttuu lopulta kuiva-adiabaattiseksi. Kolmas ainesosa on lumitykkitilanteissa helposti saatavilla, koska monesti lämpötilavähete pyrkii vääntäytymään jopa yliadiabaattiseksi. Tästä seuraa spontaaneja nousevia ilmavirtauksia, jotka voivat toimia kuuropilvien ”alkioina”. Useasti läsnä voi olla syystä tai toisesta pintavirtausten tuulikonvergenssia (maatuuli tai rannikkokonvergenssi), joka helpottaa lumikuurojen syntyä. Tyypillisesti lumitykkien syntyyn ja voimakkuuteen mainitaan vaikuttavan myös pyyhkäisymatka sekä tuuliväänteen voimakkuus, joita käsitellään tarkemmin alla.

Tapaus Merikarvian erityismausteet

Edellä mainitut elementit kohtaavat jossain päin Itämerta useita kertoja joka talvi. Siinä mielessä 8.1.2016 tapahtumien ei pitäisi olla erityisen harvinaisia. Läheisempi tarkastelu osoittaa kuitenkin, että nyt koettu tilanne oli osin harvinaisilla mausteilla varustettu. Luettelossa mainitut mausteet ovat osittain vahvasti riippuvaisia toisistaan.

·         Jäätön ja ”lämmin” merialue. Takana oli harvinaisen lämmin syksy ja alkutalvi, jonka seurauksena arktisten ilmamassojen sesonkikauteen ”päästiin” lähes jäättömässä tilanteessa. Tilanne mahdollisti pitkät pyyhkäisymatkat sekä voimakkaan lämmön ja kosteuden vuon alustasta ilmaan. Lisäksi rannikon suojana ei ollut jääpeitettä juuri lainkaan. Tämä mahdollisti kuuropilvien pääsyn maa-alueelle ilman heikkenemistä jääpeitteisellä vesialueella.

·         Kylmä ilmamassa. Lumitykin tehoa säätelee muun muassa ilmamassan ja alustan lämpötilaero. Pohjois-Amerikan suurilla järvillä nyrkkisääntö on, että 850 hPa:n lämpötilan ja alustan lämpötilan ero pitäisi olla vähintään 13 astetta. Tässä tapauksessa eroa oli pyöreästi 20 astetta. Asetelma on Selkämerellä mahdollinen vain, jos arktinen ilmamassa ”vaivautuu” paikalle alkutalven aikana. Suotavaa myös on, että pohjalla on keskimääräistä lämpimämpi syystalvi.

·         Sopivan heikko subsidenssi-inversio (ja suuri lumitykin korkeus). Tyypillisesti kylmä ilmamassa on erittäin stabiilisti kerrostunut ja saattaa sisältää pakkaskorkeapaineen aiheuttaman subsidenssi-inversion sekä tietysti myös voimakkaan pintainversion. Mikäli inversiot ovat erityisen vahvat, ilmamassan muuntuminen lumikuuroille otolliseksi kestää huomattavan kauan. Merikarvian tapauksessa muunnos ei ollut erityisen työläs. Alla oleva kuva osoittaa, että Jokioisten yöluotausta muokkaamalla lumikuurojen vähimmäiskorkeudeksi voisi arvioida reilut 2 km. Alempana olevasta numeerisen mallin ennusteluotauksesta voi saada vieläkin korkeamman arvion lumitykin korkeudelle, noin 3 km. Tämä on Suomen lumitykkitapauksissa huipputason lukema, kun tyypillisesti korkeudet liikkuvat haarukassa 1.5-2.5 km.

Jokioisten yöluotaus 9.1.2016 klo 02 Suomen aikaa. Luotauksen pintalämpötila ja kastepiste on muokattu vastaamaan keskimääräisiä olosuhteita Selkämerellä. Pinnasta nostetun ilmapaketin reitti näkyy luotausdiagrammilla violetilla viivalla.

·         Riittävästi pyyhkäisymatkaa (ja sopiva tuulensuunta). Edellä mainittuihin nyrkkisääntöihin kuuluu, että kylmällä ilmamassalla tulisi olla vähintään 80-100 km pyyhkäisymatkaa jäättömän vesialueen yllä. Suomen merialueet ovat melko kapeita, jolloin kaikilla ilmavirtaussuunnilla lumitykkiä ei yksinkertaisesti pysty muodostumaan. Rajoittava tekijä on myös osittain se, että kaikilla ilmavirtaussuunnilla ei useimmiten ole tarjota riittävän kylmää ilmamassa. Esimerkiksi lounaistuulet tarjoavat mittavia pyyhkäisymatkoja, mutta eivät yleensä tuo mukanaan kylmää ilmamassaa. Merikarvian tapauksessa pyyhkäisymatkaa oli hulppeasti, koska itä-länsisuunnassa jäätöntä matkaa järjestyi noin 300 km. Sattumalta läntinen ohjaava ilmavirtaus ei myöskään tuonut mukanaan liian lämmintä ilmaa, koska kylmä ilmamassa oli vallannut koko Fennoskandian. Oheisessa kuvassa näkyy mahdolliset saapumissuunnat lumitykkitilanteissa Kokkolan, Porin, Hangon ja Helsingin seudulla sekä lumitykin muodostumista mahdollisesti rajoittavat tekijät.

Lumitykkien mahdollisia saapumissuunta Helsingin, Hangon, Porin ja Kokkolan alueella sekä kunkin alueen merkittävimmät lumikuurojen muodostumista rajoittavat tekijät.

·         Sopiva ohjaava virtaus (riittävästi aikaa). Toisinaan pullonkaulaksi lumitykin näkökulmasta muodostuu liian voimakas ohjaava virtaus. Tässä tilanteessa ilmamassa ei ehdi muuntua riittävästi ja seurauksena on lumitykin jääminen hennon hiutaloinnin asteelle. Tällä kertaa ohjaava virtaus oli luokkaa 10 m/s, jota voi pitää jokseenkin optimaalina lumitykin näkökulmasta. Ohjaavan virtauksen täytyy myös kuljettaa lumikuuroja rannikolle, mikä Merikarvian tilanteessa toteutui perjantaiaamupäivästä alkaen, kun ohjaava virtaus kääntyi pienikokoisen matalapaineen jälkipuolella läntiseksi. Tätä voi havainnollistaa alla olevalla animaatiolla, jossa näkyy 925 hPa:n ilmavirtaus turkooseilla nuolilla (pintavirtaus mustilla nuolilla). Yötä kohti ohjaava virtaus kääntyi kohti pohjoista, mikä oli yksi osatekijä lumiryöpyn päättymisessä.

Hirlam-mallin ennuste 8.1.2016 ilmanpaineesta (mustat käyrät), pintatuulen suunnasta (mustat nuolet) sekä 925 hPa:n tuulensuunnasta (turkoosit nuolet).

·         Sopiva tuuliväänne. Tämä liittyy läheisesti edelliseen kohtaan. Mikäli nopeusväänne kasvaa pilven pohjan ja huipun välillä liian suureksi, kuuropilven muodostuminen käy dynaamisesti mahdottomaksi. Liian heikon väänteen vallitessa puolestaan tilannetta dominoivat termiset pakotteet, esimerkiksi maatuulirintaman liikkeet, eikä järjestäytynyttä lumikuuronauhaa pääse syntymään. Myös suuntaväänteellä on vaikutusta. Lumikuuronauhojen kannalta edullisinta on, jos nauhojen mahdollisina siemeninä toimivat rullapyörteet ovat mahdollisimman elinvoimaisia. Tämä mahdollistuu, jos suuntaväännettä on vähän. Pohjois-Amerikassa käytettyjen nyrkkisääntöjen mukaan ideaalitilanteessa suuntaväänne on alle 30 astetta. Alla olevan malliluotauksen mukaan Merikarvian edustalla suuntaväänne väheni aamusta iltapäivään noin 90 asteesta alle 30 asteeseen. Vielä edeltävän yön aikana rannikon edustalla oli eteläisen ohjaavan virtauksen vallitessa etelä-pohjoissuuntainen lumikuuronauha. Nauhan orientaation muuttumisen yksi osasyy voi olla tuuliprofiilin muuttuminen länsipainotteiseksi.

ECMWF-mallin ennustettu luotaus Selkämerellä Merikarvian edustalla 8.1.2016 klo 05 ja 14 sekä 9.1.2016 klo 02.

·         Pakotteiden voimakkuus. Synoptisen mittakaavan nousuliikepakote voi voimistaa lumitykkiä. Merikarvian tilanteessa merkittävä vaikutus on saattanut olla kahdella eri tekijällä. Ensinnäkin, Selkämeren pohjoisosassa olleen pienikokoisen matalapaineen läheisyydessä oli havaittavissa alatroposfäärin tuulikonvergenssia. Erityisesti tuulikonvergenssia esiintyi matalapaineen takaosan luoteisvirtauksen kohdatessa merialueen eteläosan eteläisen perusvirtauksen (ks. yllä oleva animaatio). Toiseksi, lännestä saapuneet lumikuurot kohtasivat alustan rosoisuuden lisääntyessä tuulikonvergenssia, jolla on saattanut olla pientä vaikutusta lumisateen voimakkuuteen.

·         Säätilanteen staattisuus (lumipyryn kestoaika). Kun lumitykki lähtee toimimaan, paikallisia lumikertymiä voi rajoittaa meteorologisten reunaehtojen muuttuminen. Pelkästään ohjaavan virtauksen muuttuminen saattaa kääntää lumitykin suuntaan siten, että lumimäärä jakautuu laajalle alueelle pitkin rannikkoa. Merikarvian tapauksessa tilanne pysyi harvinaisen staattisena tuntikausia. Pienikokoinen matalapaine jäi todennäköisesti termisistä syistä lähes paikalleen. Näin ollen meteorologisesti ei ollut mitään syytä, miksi lumikuuronauha olisi vaihtanut paikkaa tai orientaatiotaan.

·         Lumen rakenne. Hyvin karkean nyrkkisäännön mukaan 1 mm vettä vastaa 1 cm lunta. Vaihteluväli on kuitenkin erittäin laaja siten, että raskasta nuoskalunta kertyy samasta vesimäärästä huomattavasti ohuempi kerros kuin kevyttä pakkaslunta. Merikarvialla mitattu sademäärä oli noin 30 mm ja kertynyt lumimäärä 73 cm. Nuoskalumitapauksessa lumipeitteen lisäys olisi voinut olla ”vain” 20 cm.

Edellä mainitut mausteet voidaan taulukoida vertaillen seuraavasti:

Osatekijä

Tilanne yleensä

Case Merikarvia

Jäätön vesialue

Vain alkutalvesta rantaa myöten jäätöntä

Tammikuun alussa rantaan asti jäätöntä

Pystysuuntainen lämpötilaero

noin 15 astetta

noin 20 astetta

Lumitykin korkeus

1.5–2 km

noin 3 km

Pyyhkäisymatka

100–200 km

200–300 km

Tuulen suunta

NW-ESE

W

Nopeusväänne

vaihtelee suuresti

optimaali eli n. 10 m/s

Suuntaväänne

0…60 astetta

optimaali eli alle 30 astetta

Pakotteet

yleensä rannikkokonvergenssi

useita tuulikonvergenssi lähteitä

Staattisuus (kesto)

muutamia tunteja

12-18 tuntia

Lumen rakenne

”vesi-lumikerroin” 0.7-2

”vesi-lumikerroin” noin 2.5

 

Vertailu osoittaa, että kyseessä oli melkoinen ja todennäköisesti myös hyvin harvinainen osatekijöiden yhteensattuma. Tämä selittää myös sitä, miksi länsirannikolla (tai muuallakaan Suomen rannikolla) lumitykit eivät ole tämän tehokkaampia tai yleisempiä.

Tähtäimessä Helsinki

Suomen mittakaavassa Merikarvian tapaus on toistaiseksi ainutkertainen. Itämeren alueella ja maailmanlaajuisesti 73 senttimetrillä ei voi paukutella henkseleitä. Jo niinkin lähellä kuin Gävlessä Ruotsissa hautauduttiin 90-luvun lopussa puolentoista metrin kinoksiin. Pohjois-Amerikan suurilla järvillä lunta on tupruttanut vielä reilusti tätäkin enemmän.

Mielenkiintoinen oheiskysymys on, voiko tykki ampua suuren valkoisen ammuksensa joskus myös Helsinkiin. Heti aluksi on todettava, että Selkämeren tykin tähtäin olisi nytkin voinut osoittaa ilman mitään esteitä suoraan Raumalle tai Poriin. Voi vain kuvitella vaikutusten kertaluokan muutoksen Merikarvian lumi-infernoon verrattuna.

Pidän täysin mahdollisena, että myös Helsingin seutu voisi kokea Suomenlahden lumitykistä joskus puolimetrisen ammuksen. Suomenlahti asettaa kuitenkin varsin jyrkkiä reunaehtoja moisen tapahtuman esiintymiselle. Suomenlahden pohjukan jäätyminen saattaa alkaa varsin varhain alkutalvella, mikä lyhentää suurinta mahdollista pyyhkäisymatkaa. Lisäksi ohjaavan virtauksen optimaali vaihteluväli on selvästi kapeampi kuin Selkämerellä. Karkeasti arvioituna tämä kanava on Helsingistä katsottuna vain noin 30 asteen suuruinen kohti itäkaakkoa. Jos siis Selkämerellä merkittävin rajoittava tekijä on suotuisista suunnista saapuvan ilman liika lämpimyys, Suomenlahdella lumitykin tyrehdyttää helpoimmin epäoptimaali ilmavirtaussuunta (tai jään lyhentämä pyyhkäisymatka).

Ei ole kuitenkaan mitään esteitä sille, etteikö kohtalainen itäkaakkoinen arktinen ilmavirtaus voisi pysyä noin vuorokauden staattisena keskimääräistä lämpimämmän ja jäättömän Suomenlahden toimiessa lämmön ja kosteuden lähteenä. Kyseinen tapaus jumittaisi liikenteen lähes täysin muutamaksi päiväksi pääkaupunkiseudulla ja aiheuttaisi todennäköisesti massiivisen keskustelun talvikunnossapidon tasosta.

Talvien leudontuessa merijäättömän aikajakson pituus kasvaa. Vaikka talvien keskilämpötilat kohoaisivat, tulevinakin talvina arktista ilmamassaa tulee väijymään itään levittäytyvän laajan manneralueen yllä ja aika-ajoin piipahtamaan Suomen merialueiden yllä. On siis varsin mahdollista, että lumitykit puskevat lunta tulevinakin vuosina pitkin Itämeren rantoja vähintään entiseen tahtiin.

Marraskuun 2012 Antti-myrskyn jälkeen alkoi liki vuoden mittainen jakso, jonka aikana myrskyisyys Suomen merialueilla oli lähes olematonta. Lokakuussa alkoi kuitenkin tapahtua Pohjois-Atlantilla, ja voimakkaat länsivirtaukset ottivat suursäätilan haltuunsa. Esimakua myrskysyksystä antoi lokakuun lopun Simone-hirmumyrsky läntisessä Euroopassa. Se puhalteli muun muassa Tanskassa mittareihin maan ennätyslukemat. Kuten edellisessä blogimerkinnässä kirjoittelin, Simone ohitti Suomen lähes täysin, mutta aiheutti vahinkoja esimerkiksi Etelä-Skandinaviassa ja Baltiassa.

 

Tästä linkistä aukeava animaatio (koko noin 11 Mb) summaa lähes kahden kuukauden mittaisen jakson tapahtumat ylätroposfäärissä, vajaan 10 kilometrin korkeudella. Animaatio juoksee nopeasti eikä siinä ehdi juuri kiinnittää yksikohtiin huomiota. Sen sijaan silmiin pistävää on lähes jatkuva voimakkaiden suihkuvirtausten marssi Atlantin yli Eurooppaan. Nämä näkyvät punaisina ja violetteina vyöhykkeinä, jotka liikkuvat lännestä itään. Käytännössä nämä värit kuvastavat alueita, joilla tuulennopeus on 70 m/s (250 km/h) tai enemmän. Lisäksi huomionarvoista on virtauskentän itä-länsisuuntaisuus, mikä tulee ilmi mustien käyrien ”pyrkimyksenä” olla leveyspiirien suuntaisia. Käyrissä näkyy aaltoja (yläsolia ja –selänteitä), jotka etenevät niin ikään lännestä itään. Yleensä kahden kuukauden jakson aikana tapahtuu niin, että aallot kasvavat jossain vaiheessa suuriksi ja rikkovat siistin lännestä itään suuntautuvan yhtenäisen virtauksen. Edellisten kahden kuukauden aikana näin ei ole juuri tapahtunut, pois lukien hyvin lyhyet jaksot mm. Eino-myrskyn jälkeen.

 

Mikäli suursäätila säilyy animaatiossa nähdyn kaltaisena, ylävirtauksessa olevien aaltojen ja voimakkaiden suihkuvirtausten yhteydessä esiintyy toistuvasti jopa räjähdysmäisen nopeaa myrskymatalapaineiden muodostumista. Jos aallot eivät riko voimakasta läntistä virtausta edes itäisen Euroopan ja Venäjän alueella, voimakkaat suihkuvirtausalueet ja terävät yläsolat pääsevät kulkemaan myös Fennoskandian yli. Tällöin meidän alue ei enää olekaan matalapaineiden hautausmaa, vaan osa matalapaineista voi olla jopa voimakkaimmassa vaiheessaan Suomea ylittäessään. Keskimäärin Atlantin myrskyradan matalapaineet saavuttavat huippuintensiteettinsä hyvissä ajoin Suomen länsipuolella - yleensä jo keskellä Atlanttia.

 

Marraskuun puolivälistä joulukuun puoliväliin ulottuvalla aikajaksolla ylätroposfääri on ollut yläselänteen vaikutuspiirissä Euroopan läntisimmissä osissa. Euroopan itäisin ja pohjoisin osa on puolestaan ollut yläsolan aluetta. Asetelma tulee hyvin esiin 300 hPa:n korkeuskentän anomaliasta. Sama näkyy luonnollisesti myös ilmanpaineen ja tuulten anomaliakartoissa. Läntisessä tuulikomponentissa on melkoinen positiivinen poikkeama Islannista Fennoskandiaan ulottuvalla alueella. Lisäksi ilmanpaine on ollut Brittein saarten tienoilla hulppeasti keskimääräisen yläpuolella, kun taas Venäjällä ilmanpaine on ollut keskimääräistä alempi. Asetelma on näin ollen ollut erityisen otollinen lännestä tai länsiluoteesta saapuville säähäiriöille. Se miksi suursäätila on asettunut näin pitkäksi aika edellä kuvattuun kuoppaan, ei selviä tässä pintaraapaisussa eikä välttämättä selviäisi perusteellisessa tutkimuksessakaan.

300 hPa korkeuskentän anomalia aikajaksolla 15.11.2013-12.12.2013. Lähde: NCEP

300 hPa zonaalisen tuulikomponentin anomalia aikajaksolla 15.11.2013-12.12.2013. Lähde: NCEP

Ilmanpaineen anomalia aikajaksolla 15.11.2013-12.12.2013. Lähde: NCEP

Vertaillaanpa seuraavaksi neljää myrskytilannetta keskenään. Alla oleviin kahteen kuvapaneeliin on koottu Tapani-, Eino-, Oskari- ja Seija-myrskyjen sääkartat tapahtumapäivältä ja kahdelta edeltävältä päivältä. Ylemmässä kuvapaneelissa on esitetty samoja ylätroposfäärin tilasta kertovia kuvia kuin edeltävässä animaatiossa. Kaikille tilanteille yhteistä näyttää olevan, että kartta-alueen virtauskenttä on korostuneen läntinen ja myrskykeskuksen saapumiseen liittyy voimakas läntinen tai luoteinen ylätroposfäärin suihkuvirtaus. Yleisin tilanne näyttää olevan, että myrskykeskus (punainen M-kirjain) kehittyy suihkuvirtauksen vasemmalla jarruuntumisalueella ja terävöityvän yläsolan edessä. Seijan tapauksessa kehityksen alkuvaiheet tapahtuivat kuitenkin oikealla kiihdytysalueella ja lisäpotkua pintamatalapaineen kehitykseen toi lännestä saapunut yläsola. Lisäksi joskus näyttää käyvän niin, että jo tapahtumaa edeltävänä päivänä maamme yli liikkuu voimakas suihkuvirtaus, jota seuraa nopeassa tahdissa toinen. Näin kävi ainakin Einon ja Seijan tapauksissa.

 

Toisessa kuvapaneelissa nähdään 850 hPa:n ekvivalentti potentiaalilämpötilan ja ilmanpaineen kehitys em. myrskyjen yhteydessä. Se osoittaa selvästi, että Tapani-myrsky saapui meille hyvin kaukaa lännestä ja oli jo keskellä Atlanttia melko voimakas. Eino-myrskyn kahden vuorokauden reitti on Tapania lyhyempi, mutta liikerata on Tapanin tavoin jokseenkin itä-länsisuuntainen. Sen sijaan Oskari saapui meille länsiluoteesta ja sai alkunsa Grönlannin itärannikon tienoilta. Seija-myrsky poikkeaa muista kolmesta siten, että se voimistui myrskyksi kaikkein lähimpänä Norjan rannikkoa. Myrskyn siemenenä toiminut osakeskus myös kaarsi lounaasta kohti Fennoskandiaa. Näistä neljästä myrskystä Seija saattoi siis olla Suomeen saapuessaan lähimpänä maksimi-intensiteettiään.

300 hPa korkeuskenttä (mustat käyrät) ja tuulennopeus (värilliset alueet) neljässä eri myrskyssä tapahtumapäivänä ja kahtena edeltävänä päivänä. Ylärivissä Tapani-myrsky ja sen alla Eino, Oskari ja Seija. (Lähde: Wetter3)

 

Ilmanpaine (valkoiset käyrät) ja 850 hPa:n ekvivalentti potentiaalilämpötila (värilliset alueet) neljässä eri myrskyssä tapahtumapäivänä ja kahtena edeltävänä päivänä. Ylärivissä Tapani-myrsky ja sen alla Eino, Oskari ja Seija. (Lähde: Wetter3)

 

Helposti luulisi, että myrskyjen voimakkuuden vertailu on yksinkertaista, mutta tämä syystalvi on osoittanut, ettei asia ole niin. Vertailua voi tehdä lukuisilla eri tavoilla ja kaiken kukkuraksi on vielä pidettävä mielessä alueelliset erot. Syystalven 2013 kolme myrskyä osuivat kaikki maan etelä- ja keskiosaan, mutta pahimmat vahinkoalueet poikkesivat toisistaan. Eino kaatoi metsää erityisesti Järvi-Suomen alueella, Oskari Salpausselän tienoilla ja sen eteläpuolella ja Seija maan lounaisosassa. Lehtienpalstoilta on saanut lukea huutelua maakunnista toisiin ja jonkinasteista väittelyä voimakkaimman myrskyn nimestä. Jälkikäteen on voinut todeta, että kommentoijat ovat olleet oikeassa oman maakuntansa kohdalla.

 

Jos myrskyt halutaan kaikista vaikeuksista huolimatta ”ränkätä”, katsantotavan pitää olla valtakunnallinen ja monitahoinen. Alla olevaan taulukkoon on koottu edellä käsiteltyihin neljään myrskyyn liittyvää numerotietoa. Näiden tietojen perusteella vaikuttaa selvältä, että listan kärkeen menee selvällä erolla muihin joulukuun 2011 Tapani-myrsky. Sitä seuraavat lähes tasavahvoina Eino ja Seija. Näin ollen Oskari jää listan neljänneksi.

 

Taulukossa meteorologin silmiin pistää erityisesti sekoittuneen kerroksen paksuudet. Kaikissa tilanteissa tuulisimman alueen rajakerros on ollut yli kilometrin korkuinen. Einon tapauksessa se oli jopa huimat 1800 metriä. Huomionarvoisia ovat myös rajakerroksen huipun tuulennopeus sekä suihkuvirtausten tuulennopeudet. Nämä ovat olleet luokkaa 30-35 m/s ja 60-85 m/s jokaisessa myrskyssä. Vertailussa suurimpiin maapinnalla mitattuihin puuskiin, nähdään, että rajakerroksen tuulimaksimi ja puuskamaksimi ovat paikoin hyvinkin lähellä toisiaan.

 

On mahdollista, että pelkästään meteorologisin perustein tarkasteltuna listan kakkostila kuuluisi Seijalle, mutta vaikutusnäkökulmasta taas Eino saattaa suuremman alueellisen kattavuuden, pitkäkestoisten sähkökatkojen laajuuden ja kaatuneen puun määrällä mitattuna ajaa Seijan ohi. Loppujen lopuksi, näistä listoista ei kuitenkaan ole juuri muuta hyötyä kuin se, että tulevien myrskyjen voimaa ja vaikutuksia on helpompi kuvailla, kun antaa esimerkeiksi kaikkien tuntemia ja muistamia tapauksia. Oheinen taulukko olkoon myös muistutuksena siitä, kuinka monella tavalla myrskyjä voidaan vertailla.

  Eino Oskari Seija Tapani
Kaatunut puusto (milj. m3) 1.5 0.2-0.7 0.5-2 3.5
Sähköttömät taloudet (tuhatta) 230 50 yli 200 yli 300
Pelastustoimen tehtävät ~2000 (alustava) ~500 (alustava) ~1500 (alustava) ~6000
Pahin vahinkoalue Järvi-Suomi Uusimaa Maan lounaisosa Maan lounaisosa
Sekoittuneen kerrokseen paksuus (m) ~1800 ~1400 ~1400 ~1400
Tuuli rajakerroksen huipulla (m/s) 33 29 35 yli 35
Tuuli ylätroposfäärin suihkuvirtauksessa Suomessa (m/s) 75-85 60-70 65-75 70-80
Kovin keskituuli merellä (m/s) 27 28 31 29
Kovin puuska maalla (m/s) 27 26 30 32
Routa ei ei mitätön ei
Maa-alueiden tuulivaroituslukema (m/s) 25 20 25 30

 

Sen sijaan, että tarkastellaan tuhansia luotauksia yhtenä kokonaisuutena, on myös mielenkiintoista poimia joukosta kaikkein ”mehevimmät” tapaukset ja tarkastella niitä omana kokonaisuutenaan. Neljäosaisen pöytälaatikkotutkimuksen kolmanteen lukuun olenkin koostanut Suomen luotausasemien havaintosarjoista eri parametrien ennätyslistat sekä joukon havaintoja, joita kutsun tästä eteenpäin iltapäivälehtimäisesti superluotauksiksi. Olen määritellyt superluotaukseksi mittauksen, jossa seuraavat ehdot täyttyvät:

1.       Alimman 500 metrin keskimääräinen vesihöyryn sekoitussuhde on vähintään 11 g/kg

2.       850 ja 500 hPa:n painepintojen välinen lämpötilavähete on vähintään 7 K/km

3.       Pinnan ja 500 hPa:n välinen tuuliväänne on vähintään 15 m/s

 

Kannattaa huomata, että edelleenkin tarkastelusta puuttuu kolmas syvän kostean konvektion ainesosa eli kehityksen laukaiseva tekijä. Niinpä superluotauspäivät ovat saattaneet olla maassamme vesisateen sävyttämiä kosteanhiostavia kesäpäiviä ilman sen suurempaa ukkosiin liittyvää dramatiikkaa. Yllä asetettuihin ehtoihin ei myöskään liity pitkälle vietyjä tieteellisiä perusteluja. Tämäntapainen tarkastelu lienee silti mielekästä tehdä, koska yo. ehdot täyttävissä tilanteissa ovat aina läsnä ilmiselvät vaaraa aiheuttavan sään episodin ainekset.  Jäljempänä ruodin myös superluotauksiin liittyneitä synoptisia tilanteita. Tällä tavoin voi saada karkealla tasolla käsityksen, miten ”katastrofin” ainekset löytävät toisensa.

 

Kesä 2010 jyrää ranking-listoilla

Kun 50 vuoden kotimainen luotausaineisto laitetaan järjestykseen 850 hPa:n lämpötilan (”ilmamassan lämpötila”) perusteella, saadaan alla oleva lista. Siitä nähdään välittömästi kesän 2010 korostunut asema. Viime kesänä rikottiin ensimmäistä kertaa Suomen asemilla +20 asteen haamuraja, ja Suomen ennätystä pitää hallussaan Jyväskylä  8. elokuuta mitatulla  +20,7C lukemallaan. Kahden kymmenen kuumimman listalta selviää myös, että muun muassa kesinä 1970, 1983, 1992 ja 2008 meillä on vieraillut erittäin kuumia ilmamassoja.

 

Pvm                    Klo                      T850                    Asema

8.8.2010            0600                    20,7                     Jyväskylä

8.8.2010            1200                    20,5                     Jokioinen

8.8.2010            0000                    20,3                     Jokioinen

29.7.2010          0600                    20,2                     Jyväskylä

12.8.1992          0000                    19,9                     Sodankylä

30.7.2010          0000                    19,8                     Sodankylä

8.8.2010            1800                    19,6                     Jyväskylä

11.8.1992          1200                    19,5                     Jokioinen

3.7.2008            0000                    19,4                     Sodankylä

26.6.2009          0000                    19,2                     Sodankylä

 

Alatroposfäärin kosteuden ranking-listalla komeilee niin ikään monta kesän 2010 luotausta. Kärkisijan vie kuitenkin vuosisadan ukkoskesän, 1972 mittaus Sodankylästä. Tuolloin vesihöyryn sekoitussuhde oli alimmassa puolessa kilometrissä huikeat 15,6 g/kg. Hulppeita kosteusmääriä on mitattu myös kesien 1970, 1988, 1991 ja 2003 aikana.

 

Pvm                    Klo                      Kosteus             Asema

13.7.1972          1200                    15,6                     Sodankylä

16.7.2010          0000                    15,0                     Jokioinen

7.8.2010            1800                    14,9                     Jyväskylä

28.7.2003          1800                    14,9                     Jyväskylä

17.7.1988          0000                    14,7                     Jokioinen

1.8.1961            1200                    14,6                     Jokioinen

16.7.2010          0600                    14,5                     Jyväskylä

17.7.2001          1800                    14,3                     Jyväskylä

8.8.2010            1200                    14,2                     Jokioinen

8.8.2010            0600                    14,1                     Jyväskylä

 

Kolmas ranking-lista käsittää tuuliväännejärjestyksessä luotaukset, joissa alimmassa puolessa kilometrissä on ollut kosteutta vähintään 12 g/kg. Jotta tapaus on päässyt top20-listalle, maanpinnan ja 500 hPa:n välisen väänteen on täytynyt olla vähintään 19,6 m/s. ”Dynaamisimmat” ympäristöt ovat tarjoilleet jopa yli 25 m/s tuuliväänteitä. Listalla on varsin mielenkiintoisia päiviä, sillä 6.7.1999 havaittiin jättirakeita, 20.8.2004 esiintyi Kontiolahdella F2-luokan trombi, 5.7.2002 maan itäosassa jyräsi ensimmäinen Suomessa vahvistettu syöksyvirtausparvi ja 29.7.2010 maan keskiosaa höykytti Asta-rajuilma, joka sekin täytti syöksyvirtausparven määritelmän.

 

Pvm                    Klo                      Tuuliväänne    Asema

17.8.2007          0000                    27,5                     Jokioinen

23.6.2006          0600                    26,2                     Jyväskylä

20.8.2004          0000                    26,0                     Jokioinen

19.7.1970          1200                    25,9                     Jyväskylä

5.7.2002            1200                    24,9                     Sodankylä

18.8.2008          0000                    24,5                     Jokioinen

19.7.1970          1200                    24,2                     Jokioinen

22.7.2010          1800                    23,6                     Jyväskylä

29.7.2010          1800                    22,5                     Jyväskylä

6.7.1999            1200                    22,0                     Jokioinen

 

Ennen kesää 2010 superluotauksia kesinä 1998 ja 1999

Edellä esitetyn superluotauksen ehdot (7 K/km, 11 g/kg, 15 m/s) täyttäviä kandidaatteja löytyi koko luotausaineistosta ainoastaan 20 kappaletta. Jälleen kerran kesä 2010 hypähtää listalta esiin, sillä 20 luotauksesta peräti puolet on peräisin heinä-elokuulta 2010. Kaiken kaikkiaan luotaukset voidaan ryhmitellä tapauksiin, jolloin päädytään seuraavaan kahdeksaan episodiin (suluissa merkittävät tapahtumat):

1.       19.-20.7.1970

2.       9.7.1972 (Puumalan rajuilma, derecho-kandidaatti)

3.       9.8.1972

4.       15.-16.6.1998 (Iitin trombi)

5.       26.6.1999

6.       25.-26.7.2010 (rajua ukkosta)

7.       28.-30.7.2010 (Asta, derecho)

8.       8.8.2010 (Sylvi-rajuilma ja jättirakeet)

 

Tarkastelu osoittaa siis selvästi sekä viime kesän että ylipäätään superluotausten harvinaislaatuisuuden. Jotta asia tulisi konkreettisemmaksi, alla on luotausdiagrammilla esitettynä muutamia ehdot täyttäviä luotauksia. Ensimmäiset kaksi esimerkkiä (8.8.2010 ja 26.6.1999)kuvaavat äärimmäisen ”räjähdysherkkää” iltapäivän tilannetta. Kuten näin kuumissa ilmamassoissa yleensä on, tilanne on melko vahvasti tulpattu johtuen kaakosta saapuneesta ”koholla olevasta” hyvin sekoittuneesta ilmakerroksesta. Lopulta käynnistävän tekijän vahvuus määrittelee sen, lähteekö patoutunut potentiaalienergia muuttumaan liikkuvampaan muotoon.

Esimerkki vuodelta 1998 tuo karulla tavalla ilmi tämän työmenetelmän heikon kohdan. Rajakerros saattaa olla äärimmäisen stabiili, jolloin ainoa keino purkaa potentiaalienergiaa on kohokonvektio. Kyseisessä esimerkissä rajakerroksen kostean kerroksen yläreunasta kohotetuille ilmapaketeille konvektiivinen esto on huomattava. Kuitenkin, mikäli esto on voitettavissa, noin 2 kilometristä ylöspäin ukkospilvet nousisivat taivaalle raketin tavalla. Kyseinen termodynaaminen asetelma tekee trombien esiintymisen mahdottomaksi ja laskee syöksyvirtausriskinkin vähäiseksi.

Mitä opimme tästä?

Kotimaisen noin 50 vuotta käsittävän, tuhansia mittauksia sisältävän luotausaineiston perusteella voidaan todeta, että vain parissa kymmenessä tilanteessa alimman puolen kilometrin kerroksessa kosteutta on ollut yli 13,5 g/kg ja 850 hPa:n lämpötila on ylittänyt +18 astetta. Suuren kosteuden tilanteissa (>12 g/kg) 850 hPa:n 500 hPa:n välinen lämpötilavähete on harvinaisen suuri, jos se ylittää 6,8 K/km. Vastaavasti maanpinnan ja 500 hPa:n välinen tuuliväänne on harvinainen, jos se on kosteassa luotauksessa yli 20 m/s.

 

Jos luotausaineisto pengotaan edellä esitettyjen parametrien ehdoilla >7 K/km, > 11 g/kg ja > 15 m/s, saadaan erilleen superluotausten populaatio. Näissä tapauksissa ruuti on todella kuivaa ja useimmiten tuulista, ja ”katastrofi” jää kiinni ainoastaan siitä, onko käynnistävä tekijä riittävän voimakas. Ehdot täyttäviä luotauksia löytyi aineistosta ainoastaan 20 kappaletta, joista peräti 10 havaittiin kesällä 2010. Tämä korostaa kesän 2010 poikkeuksellisuutta sekä sitä faktaa, että rajuimmat vaaraa aiheuttavan konvektion ainesosien kohtaamiset ovat maassamme erittäin harvinaisia.

 

Superluotauksiin liittyvät säätilanteet ovat synoptisesta näkökulmasta jopa hämmentävän samankaltaisia. Tästä lisää seuraavassa luvussa.

Luotauksia käsittelevän pöytälaatikkotutkimuksen toisessa tarkastelen Suomen kolmen luotausaseman havaintohistoriaa ”haulikkograafien” avulla. Tarkastelussa on lukuisia instabiilisuuden, alatroposfäärin kosteuden, tuuliväänteen ja muiden parametrien yhdistelmiä (pitäen toki pääpainon syvän kostean konvektion ainesosissa). Tällä tavoin ykkösluvun pintaraapaisuun saadaan huomattavasti lisää syvyyttä. Jos ykkösluku jäi lukematta, kannattaa kuitenkin perehtyä luvun alkupuolella esitettyyn motivaatio- ja työmenetelmäosaan.

 

Instabiilisuus ja kosteus harvoin saman taivaan alla

Koska pääasiallinen mielenkiinto kohdistuu syvän kostean konvektion ainesosiin, tämän luvun perusgraafi on alla oleva ”haulisarja”. Siinä on esitetty kaikkien kolmen aseman kesä-elokuun luotausten kosteus-instabiilisuuspisteparit noin 50 vuoden ajalta. Kaikkiaan kuvassa on edustettuna siis yli 25 000 luotausta. 

 

Syvän kostean konvektion kannalta graafin otollisin alue sijoittuu siis oikeaan ylänurkkaan. Niinpä kuvasta nähdään välittömästi, että nämä kaksi aineosaa kohtaavat (näyttävällä tavalla) perin harvoin. Jakauma on kokonaisuudessaan kiilamainen siten, että instabiilisuuden vaihtelu on suurinta vähän kosteutta sisältävissä tilanteissa. Lisäksi lukumääräisesti korkeita lämpötilavähetteen arvoja on eniten niin ikään ”kuivissa” luotauksissa. Jos tarkastellaan ainoastaan 10-13 g/kg kosteutta sisältäviä luotauksia, nähdään, että merkittävässä osassa näitä luotauksia lämpötilavähete on pienempi kuin  6 K/km (eli stabiliteetiltaan likimain neutraali). Yli 13 g/kg kosteutta sisältävissä tapauksissa stabiilien tapausten osuus näyttää pienenevän.

 

Myös runsas kosteus ja tuuliväänne hukassa toisiltaan

Kun vaihdetaan tuuliväänne lämpötilavähetteen tilalle, saadaan alla olevan mukainen kuva. Tässäkin tapauksessa parhaat rakennusaineet rajuihin säätilanteisiin sijaitsevat kuvan oikeassa ylälaidassa. Aivan kuten perusainesosien kohdalla, myös runsas kosteus ja merkittävä tuuliväänne ”eksyvät” varsin harvoin samaan luotaukseen. Jos luotausjoukosta kahmaistaan pois tapaukset, joissa kosteutta on vähintään 10 g/kg ja tuuliväännettä 15 m/s, saadaan ainoastaan muutaman sadan luotauksen joukko. Tilastollisesti Suomessa kesä-elokuussa tällaisten luotausten osuus on säälittävät 1,5% (vuosittain kesä-elokuussa siis keskimäärin 1,4 tällaista päivää). On syytä muistaa, että näistäkin tapauksista osa jää torsoksi esimerkiksi vähäisen instabiilisuuden tai liian suuren konvektiivisen eston vuoksi.

Kuumimmilla ilmamassoilla mielenkiintoisia ominaisuuksia

Lisää taustoittavaa tietoa saadaan, kun tarkasteluun otetaan ilmamassan lämpötilaa kuvaava suure (850 hPa:n painepinnalla eli reilun kilometrin korkeudella vallitseva lämpötila). Alla olevassa kuvaajassa näkyy samainen kesä-elokuun haulisarja, mutta nyt siten, että vaaka-akselilla on ilmamassan lämpötila ja pystyakselilla alatroposfäärin kosteus. Jakaumasta tulee kauniisti kaareutuva, ja sen yläreunaa rajaavat kyllästystilassa olevat tapaukset. Kokemus on osoittanut, että valtaosassa merkittävistä syvän kostean konvektion päivistä kosteutta on alimmassa puolen kilometrin siivussa vähintään 8-10 g/kg. Kuvaajasta näkyy, että nämä lukemat saavutetaan vain ilmamassoissa, joissa T850 on vähintään välillä +5…+8C. Yli 12 g/kg lukemiin päästään puolestaan vain kympin ylittävillä ilmamassan lämpötiloilla.

Kokonaiskuva muuttuu yhä mielenkiintoisemmaksi, kun tarkastellaan ilmamassan lämpötilan ja instabiliisuuden yhdistelmää. Nähdään, että havaintopisteet muodostavat hieman samantapaisen muodostelman kuin kuvassa, jossa vaaka-akselilla oli kosteus. Kylmissä ilmamassoissa lämpötilavähetteen vaihtelu on varsin suurta, mutta alkaa supeta selvästi helleilmamassoissa siten, että kaikkein kuumimmissa massoissa vähetteet ovat varsin suuria.

 

Alla olevassa kuvassa musta palloviiva kuvaa kyseisessä lämpötilassa vallitsevaa lämpötilavähetettä kyllästystilassa olevalle ilmalle 850 hPa:n ilmanpaineessa. Näin ollen kaikki viivan yläpuolelle jäävät havaintopisteet kuvaavat luotauksia, joissa 850 hPa:n tasolla tilanne oli instabiili kostea-adiabaattisille muutoksille. Oranssi palloviiva vastaa mustaa, mutta on esitetty 500 hPa:n painetasolle. Kannattaa myös huomata, että lämpötilalukemat on merkitty palloviivan vierelle. Lämpötilalukemat pyrin valitsemaan siten, että ne vastaavat suuntaa antavasti samassa kohdassa olevien mustien pallojen tilanteita. Eli toisin sanoen tilanteissa, joissa T850 on +20C, T500 on varsin lähellä -8C:aa. Kuvan vihreä palloviiva on kahden ensin mainitun palloviivan perusteella laskettu keskimääräinen 850 ja 500 hPa:n lämpötilavähete kyllästystilassa olevalle ilmalle. Jos käytetään vertailukohtana mustaa ja vihreää viivaa, kuvasta nähdään, että varsin merkittävässä osassa tapauksia luotaus on kostea-adiabaattisille ilman pystysiirroksille epävakaa. Tämä pitää paikkaansa etenkin lämpimille ilmamassoille, koska havaintopistejakauma kaareutuu diagrammin oikeaa ylänurkkaa kohti. Kuvasta voi myös päätellä, että yli +15C ilmamassoissa instabiilisuus on käytännössä aina läsnä, joten syvä kostea konvektio jää kiinni kahdesta muusta ainesosasta.

 

Tämän luvun viimeisissä kuvissa kurkataan pinnanläheisten ilmavirtausten ja 500 hPa:n ilmavirtausten suuntia yhdessä ilmamassan lämpötilan ja alatroposfäärin kosteuden kanssa. Ei ole yllätys, että kuumimpien ilmamassojen saapuessa meille tuulet puhaltavat pinnan lähellä erityisesti kaakon ja ylempänä etelän suunnalta. Kuvasta näkyy, että lämpimiä lukemia on havaittu myös esimerkiksi pohjoistuulten vallitessa. Nämä eivät ole välttämättä havaintovirheitä, vaan ovat todennäköisesti peräisin tilanteista, joissa ilmamassa on ollut vaihtumassa tai havaintopaikan yllä on ollut esimerkiksi heikkotuulinen korkeapaine.

 

Kosteimmissa tilanteissa pinnanläheisten virtausten suuntavalikoima on hieman edellä nähtyä laajempi. Suuri osa tapauksista sijoittuu etelän ja idän välille. Keskitroposfäärissä suunnat painottuvat kaakon ja lounaan välille. Koillisia erittäin kosteita virtauksia saattaa esiintyä esimerkiksi tilanteissa, joissa kapea kostean ilman sektori yltää Suomeen, mutta pintavirtaukset jäävät puhaltamaan koillisesta.

 

Mitä opimme tästä?

Tässä luvussa tarkasteltiin Suomen 50 vuoden luotausaikasarjoja erityisesti kesätilanteiden ja syvän kostean konvektion kannalta. Alatroposfäärin kosteudesta, instabiilisuudesta, tuuliväänteestä ja ilmamassan lämpötilasta tehtiin useita kaksi parametria yhdistävää ns. scatter plottia. Tarkastelun keskeisimmät havainnot olivat:

·         Suuri alatroposfäärin kosteus ja lämpötilavähete (keskitroposfäärin instabiilisuus) ovat harvoin läsnä samassa luotauksessa. Suurimmat lämpötilavähetteen arvot havaitaan yleensä vähän kosteutta sisältävissä luotauksissa.

·         Suuri alatroposfäärin kosteus ja paksun kerroksen tuuliväänne ovat myös harvinainen yhdistelmä samassa luotauksessa. Keskimäärin kesässä on vain 1,4 päivää, jolloin Suomessa havaitaan luotaus, jossa kosteutta on vähintään 10 g/kg ja tuuliväännettä yli 15 m/s.

·         Yli 12 g/kg kosteutta sisältäviä luotauksia havaitaan vain, kun 850 hPa:n lämpötila ylittää +10C.

·         Lämpimissä ilmamassoissa lämpötilavähete on yleensä kostea-adiabaattisille ilman pystysiirroksille epävakaa. Kuumissa ilmamassoissa (T850 > +15C) näin on käytännössä aina. Syvän kostean konvektion syntyminen jää siis kiinni joko kosteudesta tai laukaisevasta tekijästä.

·         Kuumimpien ilmamassojen saapuessa meille pinnanläheiset (vapaan ilmakehän) virtaukset puhaltavat useimmiten kaakosta (etelästä).  Kosteimpien ilmamassojen saapuessa pinnanläheiset virtaukset ovat yleensä idän ja etelän välisestä sektorista.

Motivaatio

Idea tämänkertaiseen pöytälaatikkotutkimukseen alkoi kyteä mielessäni jo reilu vuosi sitten. Taustalla oli huomio, että kuuro- ja ukkospilviä ennustaessa ja tutkiessa huomio keskittyy usein enemmän tai vähemmän konvektion käytettävissä olevan potentiaalienergian (CAPE) määrään. Tämä lähestymistapa on toki luonteva, koska CAPE tiivistää yhteen numeroon kahden syvän kostean konvektion ainesosan vaikutuksen. Mutta miksi ainesosia ja niiden esiintymistä ei voisi tarkastella myös yksitellen? Tunnettu tosiasiahan on, että CAPE ei ole ”jäykästi” ilmakehässä siirtyvä ominaisuus, eikä se kerro mitään energiamäärästä tulevien tuntien aikana. Potentiaalienergian määrään vaikuttavat ainesosat siis elävät enemmän tai vähemmän omaa elämäänsä, minkä vuoksi ainesosakohtaisessa tarkastelussa on erityinen oma mielenkiintonsa.

 

Penkomalla luotauksia voi esimerkiksi valottaa sitä, mistä ainesosasta meidän leveysasteilla on erityisesti ”pulaa” ja miten yleisiä erilaiset ainesosien kombinaatiot ovat. Näiden ajatusten siivittämänä sukelsin 50 vuotta käsittävään kotimaiseen luotausaineistoon. Hyvin pian huomasin, että sukellus menee syvemmälle kuin oli tarkoitus. Pohjakosketus ei silti ollut suuri vahinko, koska aineistosta paljastui monia hyvin mielenkiintoisia tuloksia. Julkaisen tulokset useammassa erillisessä blogimerkinnässä.

 

Mitä tulikaan tehtyä?

Sade- ja ukkoskuuropilvet vaativat syntyäkseen kolme ainesosaa:

1.       Instabiilisuus eli sopiva lämpötilan pystyjakauma (eli maanpinnan lähellä riittävän lämmintä suhteessa ylempänä olevaan ilmaan)

2.       Kosteus (maanpinnan lähellä)

3.       Kehityksen käynnistävä tekijä

Jos yksikin näistä aineosista puuttuu, sade- tai ukkoskuuroja ei muodostu. Vaaraa aiheuttaville ukkospilville mainitaan joskus lisäainesosana paksussa ilmakerroksessa esiintyvä tuuliväänne (eli tuulen suunnan ja nopeuden muutokset ylöspäin mentäessä).  Tämä tekijä ei kuitenkaan ole siinä mielessä vertailukelpoinen edellä mainittujen kanssa, että sen olemassaolo ei ole pakollinen vaarallisten ukkospilvien esiintymiselle.

 

Ainoa havaintoihin pohjautuva tapa tutkia ainesosien esiintymistä viime vuosikymmenien aikana, on tarkastella ilmakehäluotauksia. Niinpä tutkimusaineistoksi valikoituivat luotaushavainnot Jokioisista, Jyväskylästä ja Sodankylästä. Ensin mainitun aseman aikasarja kattaa vuodet 1961-2010 ja kahden viimeksi mainitun vuodet 1965-2010.

 

Instabiilisuutta kuvaa tässä tutkimuksessa 850 hPa:n ja 500 hPa:n välinen lämpötilavähete, mikä kertoo lämpötilan laskun määrän kilometriä kohti. Tämän noin 3,5 kilometrin paksuisen ilmakerroksen stabiilisuus on yleensä ratkaiseva pilven orastavan kasvun kannalta. Kosteusolosuhteita kuvaa puolestaan maanpinnan ja 500 metrin välinen keskimääräinen vesihöyryn sekoitussuhde. Suure kertoo, kuinka monta grammaa vesihöyryä on kilogrammassa ilmaa. Pelkkää 2 metrin korkeudella havaittua kosteutta ei olisi ollut järkevää ottaa mittariksi, koska käytännössä kosteutta on oltava ainakin muutaman sadan metrin paksuisessa kerroksessa, että se riittäisi kunnolla ruokkimaan ukkospilven kasvua.

 

Entä kuinka päästä käsiksi kolmanteen ainesosaan eli käynnistävään tekijään? Valitettavasti tämä työmenetelmä ei mahdollista ”triggeröinnin” tutkimista. Sääasema- ja varsinkin luotausasemaverkosto on useissa tapauksissa aivan liian harva, jotta käynnistävä tekijä voitaisiin varmuudella ”eristää” saati luokitella.

 

Luotausaineiston käyttö ei ole muutenkaan aivan ongelmatonta. Tekniikka, jolla luotauksia on tehty vuosikymmenten varrella, on vaihtunut useita kertoja. Alkuaikoina mittaukset kärsivät etenkin antureiden hitaudesta, jolloin alhaalla olevien ilmakerrosten olosuhteet saattoivat heijastua liian ylös, ja esimerkiksi kosteusanturi saattoi jäätymisen vuoksi pilata kosteusmittaukset ylätroposfäärissä. Mittaustekniikkaan liittyviä epähomogeenisuuksia en ole karsinut aineistosta mitenkään. Joukossa on myös pieni joukko selviä yksittäisiä mittausvirheitä. Nämä tulevat useimmiten näkyviin jakaumien ulkopuolella sijaitsevina pisteinä.

 

Ennen kuin hypätään tulosten pariin, on vielä syytä korostaa, että ainesosien tarkastelu erikseen ei ole nollasummapeliä. Ei ole siis asetettavissa yksikäsitteisiä raja-arvoja, millä lämpötilavähetteen ja kosteuden arvoilla saadaan aikaan ukkospilviä. Edes näiden kahden tarkasteleminen yhdessä ei riitä, koska kolmas ainesosa jää joka tapauksessa tämän työn ulkopuolelle. Lisäksi valitut suureet jättävät täysin huomiotta 850 hPa:n alapuolella vallitsevan lämpötilajakauman. Käytännössä tämä voi johtaa siihen, että erittäin otollinenkin kosteus-instabiilisuus-yhdistelmä ei voi johtaa esimerkiksi suuren konvektiivisen eston vuoksi ukkoskuurojen kehittymiseen. Kyseisen yhdistelmän tarkastelu kertoo siis enemmänkin siitä, kuinka usein sade- ja ukkoskuuroille otollinen tilanne on ylipäätään olemassa (vaikka CAPE-pajatso jäisikin lopulta tyhjentämättä). Huolimatta työmenetelmän heikkouksista luotausaikasarjoista voi riipiä irti paljon yleissivistävää ja taustoittavaa tietoa Suomen syvän kostean konvektion ilmastosta.

 

Instabiilisuus on vähäisintä kesän ollessa kuumimmillaan

Alla olevassa kuvassa on esitetty päivittäiset suurimmat keskimääräiset 850 ja 500 hPa:n välisen lämpötilavähetteen arvot Suomen kolmelta luotausasemalta. Kuvasta näkyy, että suuret vähetteet ovat todennäköisempiä talvella kuin kesällä. Lisäksi vähetteiden vaihteluväli on talvella kesää suurempi. Keskimäärin pienimmät (eli ukkospilvien kannalta huonoimmat) vähetteet esiintyvät loppukesästä ja alkusyksystä. Jakaumaa selittää suurelta osin lämpötilavähetteiden lämpötilariippuvuus. Talvisissa lämpötiloissa esimerkiksi kostea-adiabaattinen lämpötilavähete on selvästi suurempi kuin kesäisissä lämpötiloissa.

Lämpimissä kesäolosuhteissa neutraali kostea-adiabaattinen 850 ja 500 hPa:n välinen lämpötilavähete on likimain 6-6,5 K/km. Toisin sanoen, tätä lukemaa suuremmat vähetteet ovat suotuisia sade- ja ukkoskuurojen kehitykselle. Kuvasta nähdään, että kuumimman ukkossesongin aikana yksittäisenä päivänä 75% todennäköisyydellä vähete jää 6,5 K/km heikommalle puolelle. Poikkeuksellisen suuren (97,5% prosenttipiste) lämpötilavähetteen raja menee samaan aikaan 7 K/km kohdalla ennätysten yltäessä lähelle 8 K/km:iä.

 

Näillä numeroilla mitattuna jäämme huimasti jälkeen esimerkiksi Yhdysvaltojen Keskilännen olosuhteista. Meksikon suunnalta saapuvissa keskitroposfäärin ilmamassoissa 8 K/km lämpötilavähetteet ovat siellä enemmänkin sääntö kuin poikkeus. Eroa selittää suurelta osin se, että Suomessa tai Suomen lähialueilla ei ole olemassa laajaa ylänköaluetta, jossa hurja instabiilisuus voisi muodostua ja liukua lopulta pinnan tuntumassa majailevien kosteiden ilmakerrosten ylle.

 

Ilmastollisesti mielenkiintoinen näkökulma saadaan, kun tarkastellaan instabiilisuuden kesäkuukausien (kesä-elo) aikasarjaa. Alla olevasta kuvasta nähdään, että keskimääräinen lämpötilavähetteiden vuosittain vaihtelu on absoluuttisella tasolla melko pientä. Aikasarjasta on vaikea erottaa merkittäviä trendejä.

 

Alatroposfäärin kosteus on suurimmillaan heinä-elokuun vaihteessa

Toisen tarkasteltavan ainesosan vuodenkierto on jokseenkin päinvastainen kuin instabiilisuuden. Ei ole mikään yllätys, että pienimmät kosteusmäärät havaitaan keskitalvella. Suurimmillaan kosteuden määrä on keskimäärin heinäkuun loppupuoliskolla ja elokuun ensimmäisellä viikolla. Lisäksi kesäaikaan kosteuden vaihtelu on suurempaa kuin talvella, mitä selittää yksinkertaisesti kylmän ilman huonompi kyky sitoa kosteutta.

 

Kesän kosteimpaan aikaan tyypillinen vesihöyryn sekoitussuhde on luokkaa 9 g/kg. Poikkeuksellisen korkea kosteusmäärä tähän aikaan vuodesta on noin 12 g/kg, kun ennätyslukemat yltävät lähes 16 g/kg:aan. Itse olen pitänyt jonkinlaisena merkittävänä tilanteen peukalosääntönä 10 g/kg:aa. Luotausaineisto osoittaa, että näitä lukemia voidaan Suomessa saavuttaa vapusta aina syyskuun loppuun asti. 12 g/kg on puolestaan mahdollisuuksien rajoissa kesä-elokuun ajan.

 

Jos verrataan kosteusjakaumaa ukkosen esiintymiseen Suomessa (ei kuvaa), huomataan välittömästi, että suurimmat vuorokautiset salamamäärät ja suurimmat kosteusmäärät löytävät melko tarkalleen toisensa. Tästä voisi yksinkertaistaen päätellä, että ukkospilvet pomppivat Suomessa taivaalle ensisijaisesti kosteuden pillin mukaan. Ukkoskauden laidoilla olevien kuukausien (touko- ja syyskuu) aikana kosteusolosuhteet ovat likimain samat, mutta salamointi on hieman yleisempää toukokuussa. Tässä osaselitys voi olla keskimäärin parempi instabiilisuus alkukesän aikana. Myös tämän tutkimuksen ulkopuolelle jäänyt ainesosa (laukaiseva tekijä) saattaa selittää eroa.

 

Mikäli kosteudella on instabiilisuutta hallitsevampi rooli ilmastossamme, on erityisen kiinnostavaa tarkastella, kuinka kesän keskimääräiset kosteusolot ovat vaihdelleet viime vuosikymmeninä. Alla olevasta aikasarjasta nähdään, että 2000-luvulla on ollut useita varsin kosteita kesiä. Tätä ennen jakaumassa on instabiilisuuden tavoin pieni aallonpohja. Vielä aiemmin eli 60- tai 70-luvuilla kosteat kesät olivat myös melko yleisiä olettaen, että tämän aikaisiin kosteusmittauksiin voi luottaa. Kokonaisuutena tästäkään aikasarjasta on vaikea löytää selvää trendiä. Sen sijaan yhteys voimakkaisiin ukkoskesiin on selvempi kuin lämpötilavähetteellä. Aktiiviset ukkoskesät 1972, 1988, 2003 ja 2010 nousevat aikasarjasta esiin. Kesä 1972 on koko aikasarjan kostein, mitä seuraa hyvänä kakkosena kesä 2010. Salamamäärien ja alatroposfäärin kosteuden välinen korrelaatio ei silti ole kaksinen. Tarkastelin testimielessä heinäkuita ja sain heinäkuiden salamamäärien ja kosteuksien väliseksi korrelaatioksi olemattomat 0,38. Huonoa korrelaatiota selittää tunnettu tosiasia, että kokonaissalamäärissä yksittäiset päivät saavat usein erittäin suuren painoarvon. Niinpä pari runsassalamaista kosteaa päivää muuten kuivan kuukauden aikana nakertaa kuukausitason korrelaatiota tehokkaasti.

Tuuliväännettä riittää

Myös tuuliväänteen jakauma on jokseenkin odotetunlainen. Talviajan voimakkaampi barokliinisyys (eli horisontaaliset lämpötilaerot) johtaa luonnollisesti voimakkaampiin tuuliin etenkin vapaassa ilmakehässä ja sitä kautta voimakkaampaan tuuliväänteeseen. Jakauma käyttäytyy pitkälti lämpötilavähetteen tavoin, jolloin suurimmat lukemat ja vaihteluväli havaitaan talvella. Pienimmät lukemat ja vaihteluväli osuvat puolestaan hyvin lähelle kiivainta ukkossesonkia. Tällöin tyypillinen päivittäinen tuuliväänteen maksimiarvo on noin 15 m/s, eivätkä 20-30 m/s lukematkaan ole kovin harvinaisia. Vuosittaisessa aikasarjassa kesäkausien keskimääräinen tuuliväänne on reilut 10 m/s. Lisäksi aikasarjassa nähdään hyvin heikosti laskeva suuntaus.

Ukkostilanteita ajatellen jo keskimääräinenkin tuuliväänteen lukema 15 m/s olisi kovaa valuuttaa eli tuuliväänteestä ei pitäisi meidän leveysasteilla olla pulaa. Asia ei kuitenkaan ole aivan näin yksinkertainen. Käytännössä voimakkaan tuuliväänteen alueet pyrkivät rajoittumaan fysiikan lakien ahdistamina pintarintamien kylmille puolille, jotka eivät taas ole tyypillisiä runsaan alatroposfäärin kosteuden alueita. Eli toisin sanoen runsas kosteus ja voimakas tuuliväänne kohtaavat perin harvoin. Tämä järkeily oli yksi syy siihen, miksi en voinut jättää kuvaajien piirtämistä tähän. Seuraava blogimerkintä kertookin lisää siitä, kuinka usein otolliset ainesosat löytävät toisensa.

Mitä opimme tästä?

Tämänkertaisessa pöytälaatikkotutkimuksessa tarkastelin 45-50 vuoden pituisia ilmakehäluotausaikasarjoja Suomen kolmelta luotausasemalta. Tutkimuksen ensimmäisessä osassa tarkastelin erikseen instabiilisuuden (tässä 850 ja 500 hPa:n välinen lämpötilavähete), alatroposfäärin kosteuden (tässä alimman 500 metrin ilmakerroksen vesihöyryn sekoitussuhde) ja paksun kerroksen tuuliväänteen (tässä pinnan ja 500 hPa:n välinen tuuliväänne) esiintymistä vuoden eri aikoina sekä 50 vuoden aikajaksolla.

 

Merkittävimmät tulokset olivat seuraavanlaisia:

·         Instabiilisuus ja sen vaihtelu on suurinta talvikaudella. Pienimmät lämpötilavähetteen arvot havaitaan juuri vilkkaimman ukkossesongin aikana. Tällöin 7 K/km on poikkeuksellisen suuri lämpötilavähetelukema.

·         Alatroposfäärin kosteus ja sen vaihtelu on suurinta ukkosten esiintymishuipun aikoihin heinäkuussa sekä elokuun alussa. Tällöin keskimääräinen vesihöyryn sekoitussuhde on 9 g/kg ja poikkeuksellisen korkean lukeman suuruus 12 g/kg.

·         Paksun kerroksen tuuliväänne käyttäytyy instabiilisuuden tavoin eli on minimissään ukkossesongin aikana. Tuolloinkin keskimääräinen tuuliväänne on kuitenkin luokkaa 15 m/s, mikä on riittävä lukema vaarallisten ukkospilvien muodostumiselle.

·         50 vuoden aikasarjoissa ei näy selviä kesäkuukausien trendejä tutkituissa parametreissa.

·         Instabiilisuuden ja kosteuden yhteys havaittuihin salamamääriin on varsin heikko. Jälkimmäisen kohdalla korrelaatio on vahvempi mutta silti alhainen.

·         Kosteuden vuodenaikaisjakauma on vahvasti yhteydessä ukkosaktiivisuuden kanssa, mikä antaa vihiä sen instabiilisuutta hallitsevammasta roolista Suomen ilmastossa.

·         Ainesosien ja osatekijöiden tarkastelu toisistaan irrallisina ei kerro mitään siitä, kuinka yleisiä otolliset ainesosien syvälle kostealle (ja vaaralliselle) konvektiolle otolliset yhdistelmät ovat. Kokemuksesta tiedetään, että voimakas tuuliväänne ja suuri alatroposfäärin kosteus esiintyvät usein eri alueilla.

Taustaa

Kevään mittaan olen raapustanut hiljalleen pöytälaatikkoon uutta pientä tutkielmaa. Tällä kertaa syvennyin Suomen salamatilastoihin ja sitä kautta rajuimpien ukkospäivien meteorologisiin taustoihin. Jokaisella ammatilais- ja amatöörimeteorologilla lienee oma käsityksensä siitä, minkälainen suursäätila tuo mukanaan ikimuistettavimmat ukkoset. Usein kuulee puhuttavan, että ”ruuti kuivuu”, kun matalapaine puikahtaa Suomen lounais- tai eteläpuolelle. Tällöin avautuu väylä mantereiselle helleilmamassalle kaakon suunnalta. Raotan esirippua jo tässä vaiheessa sen verran, että tämä ei ehkä olekaan täysin optimaali kuvio rajujen ukkosten kannalta.

Alla yritän antaa vastauksia seuraaviin kysymyksiin:

  • Mikä on voimakkaisiin ukkosiin liittyvä suuren mittakaavan säätilanne tapahtumapäivänä ja 1-10 päivää sitä ennen?
  • Miten syvän kostean konvektion ainesosat kehittyvät tilannetta ennen?
  • Voidaanko tuloksista saada jotain hyötyä vastaavien tilanteiden ennustamiseen?
  •  

Tietolähteet

Tutkimuksen pohjamateriaalina toimivat Ilmatieteen laitoksen vuorokautiset Suomen salamapaikannustiedot (kiitokset Antille jälleen kerran) vuosilta 2001-2006. Aineisto suodatettiin siten, että mukaan otettiin vain päivät, jolloin vuorokaudessa esiintyi vähintään 5 000 maasalamaa. Tämän toimenpiteen jälkeen jäljelle jäi 41 päivää. Seuraavaksi joukosta poistettiin usean vuorokauden mittaisten salamaepisodien ensimmäistä päivää seuraavat vuorokaudet (eli huomioitiin vain jakson ensimmäinen päivä). Toimenpide tehtiin siksi, etteivät pitkien salamaepisodien vaikutus esimerkiksi vuosilta 2001 ja 2003 korostuisi liikaa. Lopulta jäljelle jäi 27 päivää, ja näille päiville laskettiin NCEPin uusanalyysitiedoista useita keskiarvo- ja anomaliakenttiä.

Syvän konvektion ainesosat ja tarkasteltavat kentät

Syvän kostean konvektion ainesosat ovat kosteus (alimmissa kilometreissä), instabiilisuus (lämpötilan riittävä lasku ylöspäin mentäessä) sekä nosto (~kehityksen käynnistävä tekijä). Valitaan tämän pohjalta tarkasteltaviksi parametreiksi sadevesisisältö, lämpötilat reilun 5 ja 1 kilometrin korkeudessa sekä 300 hPa:n painepinnan korkeus. Kolmanteen ainesosaan ei uusanalyysitiedoista löydy suoraa vastausta, mutta 300 hPa:n (noin 10 km) tason tapahtumat ovat usein myötävaikuttamassa ukkospilville otollisten olosuhteiden muovautumisessa. Edellä mainittujen lisäksi tarkastellaan vielä merenpintapaineen jakaumia sekä tuulen nopeutta reilun 5 kilometrin korkeudella.

”Nosto”

Alla näkyy kymmenen vuorokauden mittainen animaatio, joka kertoo keskimääräisen 300 hPa:n korkeuskentän 0-10 vrk ennen ukkostilannetta. Keskimääräiskentästä nähdään, kuinka yläsola alkaa lähestyä Suomea Grönlannin tienoilta. Juuri ennen ukkospäivää sola terävöityy Brittein saarten paikkeilla ja puskee yläselänteen Suomen yltä itään. Solan ja selänteen liikkeet näkyvät kauniisti myös anomaliakentissä (ei kuvaa). Niissä esiintyy myös muita ”oikkuja”, mutta tämä on toki täysin normaali kuvio pallon ympäri ulottuvassa ”aaltojunassa”. Solan liike Grönlannista ei ole aivan tasaista, vaan vaikuttaisi ikään kuin solanpoikasia liikkuisi itään useita ennen lopullisen montun syntyä. Tämä saattaa olla oikku pienestä otannasta tai voi jopa kuvata sitä, että yläsolan porautuminen etelään voi olla usean pienemmän solan aikaansaannosta (tämä on kuitenkin pelkkää arvailua).

Keskimääräinen 300 hPa:n korkeus 0-10 vuorokautta ennen ukkospäivää.

Instabiilisuus

Alla on keskimääräinen 500 ja 850 hPa:n (noin 5,5 ja 1,5 kilometriä) lämpötilan kehitys vuorokausille 0-5. Ukkospilvien kannalta suotuisaa olisi kehitys, jossa näiden kahden pinnan välinen lämpötilaero kasvaisi (olettaen, ettei painepintojen korkeuksien muutos eliminoi tätä vaikutusta). Ylemmästä animaatiosta nähdään, että Suomen alueella 500 hPa:n lämpötilan vaihtelut ovat varsin marginaalisia. Juuri ennen ukkospäivää lämpötila lähtee yläselänteen myötä nousuun, mutta putoaa ukkospäiväksi yläsolan lähestyessä takaisin lähes lähtötasolleen. Alemmasta animaatiosta nähdään, että 850 hPa:ssa muutokset ovat paljon korostuneempia. Lämpötila kiipeää tasaiseen tahtiin noin 2 astetta. Animaatioiden perusteella on siis varsin ilmeistä, että instabiilisuus kasvaa ukkospäivän lähestyessä ja erityisesti viimeisen 24 tunnin aikana. Kannattaa myös huomata, että lämpimän ilman advektio aiheuttaa heikkoa nousevaa liikettä, jolla voi olla samantapainen vaikutus ukkospilvien elinympäristöön kuin edellä 300 hPa:n tarkastelussa on mainittu.

Keskimääräinen 500 hPa:n lämpötila 0-5 vuorokautta ennen ukkospäivää.

Keskimääräinen 850 hPa:n lämpötila 0-5 vuorokautta ennen ukkospäivää. 

Kosteus

Alla olevassa animaatiossa näkyy keskimääräinen ilmakehän sadevesisisältö 0-5 vuorokautta ennen ukkospäivää. Tämän suureen käyttö on siinä mielessä perusteltua, että leijonanosa ilmakehän kosteudesta on alimmissa kilometreissä. Niinpä myös pinnanläheisen kosteuden muutokset vaikuttavat voimakkaasti sadevesisisältöön. Animaatiosta voi huomata, kuinka kosteus määrät huipentuvat ukkospäivään. Lukuarvot muuttuvat reilusta 20 millimetristä reiluun 25 milliin. Animaatio antaa myös mielikuvan, että kosteus saapuisi meille etelän tai eteläkaakon suunnalta. Tämän varmistamiseksi pitäisi kuitenkin tehdä säätilanteille syvempää trajektoritarkastelua.

Keskimääräinen ilmakehän sadevesisisältö (mm) 0-5 vuorokautta ennen ukkospäivää.

Merenpintapaine ja ylätuulet

Alla olevassa keskimääräistä vuorokausien 0-10 merenpintapainetta kuvaavassa animaatiossa näkyy, kuinka suuressa osaa Eurooppaa on aluksi korkeapaine. Se luikahtaa kuitenkin vähitellen itään, kun Grönlannin tienoilta jyrää matalapaine aina Skandinaviaan saakka. Niinpä myös ilmavirtaukset pinnan lähellä kääntyvät etelän puolelle. 500 hPa:n korkeudella keskimääräiset virtaukset (ei kuvaa) ovat vielä 5 vrk ennen ukkostilannetta erittäin heikkoja. Lounaisvirtaukset voimistuvat vähitellen ja ovat ukkospäivänä keskimäärin 8-9 m/s. Tämä tarkoittaisi varsin vaatimatonta paksun kerroksen tuuliväännettä, mutta täytyy muistaa, että kyseessä on lähes 30 tapauksen keskiarvo.

Keskimääräinen merenpintapaine (hPa) 0-10 vuorokautta ennen ukkospäivää.
 

Sudenkuoppia ja käsien heiluttelua

Tästä minitutkimuksesta ei voi vetää kovin pitkälle meneviä johtopäätöksiä Suomen voimakkaiden ukkosten synoptisesta klimatologiasta. Ensinnäkin tutkimusjakso on varsin lyhyt, minkä seurauksena ukkospäiväotanta on varsin pieni. Lisäksi filtterinä käytettiin ainoastaan salamamääriä. Yleisesti tunnettuahan on, että yli 5000 maapaukun päiviä voi esiintyä melko erilaisten suursäätilojen ja dynamiikan vallitessa. Toisaalta tämä ei muuta syvän kostean konvektion ainesosalistaa. Ainoastaan tapa, jolla reseptin ainekset putoavat kulhoon voi vaihdella. Tämä taas on omiaan sotkemaan ja loiventamaan keskiarvokenttiä. Täyttä sekasotkua nämä tavat eivät kuitenkaan muodosta, koska keskiarvoanimaatiot ovat varsin kauniita katsella. Erityisen tärkeää on muistaa, että tässä esitetyt tulokset eivät edusta rankkasateisiin, trombeihin, suuriin rakeisiin tai syöksyvirtauksiin liittyvää synoptista klimatologiaa.

Johtopäätökset

Edellä esitetyistä tuloksista voidaan esittää seuraavanlainen varovainen yhteenveto:

  • Ukkospilvien ympäristöä voimakkaasti muokkaava yläsola näyttäisi saavan keskimäärin alkunsa Grönlannin tienoilla. Solan syveneminen Brittein saarilla pullistaa meille aluksi yläselänteen, joka kuitenkin väistyy pian itään.
  • Keskitroposfäärin (~5,5 km) lämpötilan muutokset ovat edeltävinä päivinä keskimäärin melko vähäisiä, joskin lievää kylmenemistä tapahtuu juuri ennen ukkospäivää (yläsolan vaikutuksesta).
  • Alatroposfäärin (~1,5 km) lämpötilan muutokset ovat suurempia. Lämpötilat kohoavat yleisesti noin 2 astetta. Lämpötilan kasvu johtunee myös suurelta osin ylävirtauksen etelästä lämpöä pumppaavasta vaikutuksesta. Lämpenemisen ja sen yllä olevan kylmenemisen yhteisvaikutus lisää instabiilisuutta, mikä on suotuisaa ukkosille.
  • Alailmakehän kosteus lisääntyy ukkospäivän lähestyessä. Kosteus näyttäisi olevan keskimäärin etelän suunnalta peräisin, joskaan tätä ei voida yllä olevien tietojen perusteella vahvistaa.
  • Ukkospäivää ennen Suomessa on korkeanselänne. Pintamatala liikkuu kuitenkin Islannin länsipuolelta Ruotsin ja Norjan ylle ja syrjäyttää selänteen Venäjälle. Samalla pintavirtaukset kääntyvät etelään, mikä olisi sopusoinnussa mahdollisen eteläisen kosteuden advektion kanssa.
  • Keskitroposfäärin virtaukset ovat ukkospäivää ennen hyvin heikkoja, mutta voimistuvat ukkospäiväksi ja kääntyvät keskimäärin lounaan puolelle.

Näiden tulosten valossa vaikuttaisi, ettei kunnon salamapäivä Suomessa välttämättä vaadi matalapaineen kuroutumista Suomen lounais- tai eteläpuolelle ja näin ollen virtausten kääntymistä kaakkoon. ”Häiriön” siemen näyttäisi lähtevän itämään varsin kaukana Suomesta ja se saapuu meille lännestä avaten hetkeksi lämpö- ja kosteuskanavan etelästä samalla, kun ylempänä ilma on kylmenemässä. On täysin selvää, että kunnon myräköitä saapuu meille kaakosta ja jopa idästä. Näiden tulosten valossa lienee kuitenkin aiheellista kysyä, onko kaakon rooli meillä turhaan paisuteltu? Aiheellista on myös kysyä, ketä tämä 45 asteen ero suunnassa oikeasti liikauttaa…

Saturday, 12 January 2008 22:00

Suomen maa-alueiden kovimpien tuulien anatomiaa

Written by

Taustaa

Tällä kertaa nostin näppiksen pöydälle tavoitteena tehdä pieni pöytälaatikkotutkimus. Viime joulukuisten Pohjois-Lapin myrskyjen ja muutamien vanhempien samankaltaisten tapausten motivoimana päätin selvittää Suomen maa-alueiden hurjimpien tuulien meteorologista taustaa. Suomessahan myrskyä (yli 21 m/s) ei ole mitattu keskituulena kuin merialueilla, tuntureilla sekä Pohjois-Lapin "tasamaalla". Joulukuussa 2007 Kevon mittausasemalla luoteistuuli hönkäisi mittariin järkyttävät 28 m/s puuskien kivutessa lähes 40 m/s:iin. Lukemat olivat suurempia kuin millään merisääasemalla mitattiin koko vuonna.

Tässä muutamia kysymyksiä, joihin olen yrittänyt kaivaa vastaukset Utsjoki-Kevon aseman mittausten perusteella:

  • Kuinka yleisiä erittäin voimakkaat tuulet (yli 17 m/s) ovat?
  • Mikä on tuulen nopeuksien ja suuntien jakauma?
  • Mikä on näiden tilanteiden kuukausittainen jakauma?
  • Mikä on näiden tilanteiden suuren mittakaavan säätilanne tapahtumapäivänä ja 1-5 päivää sitä ennen?
  • Miten mittaustulokset ovat selitettävissä esimerkiksi aseman orografian ja säätilanteiden avulla?
  • Voidaanko tuloksista saada jotain hyötyä vastaavien tilanteiden ennustamiseen?

Tietolähteet

Työ nytkähti liikkeelle tekemällä havaintotietokantaan haku Kevon tuulimittauksista vuosilta 1962-2007. Mukaan otettiin vain havaintohetkellä mitattu keskituuli (ei siis kolmen tunnin jakson maksimikeskituuli), jos se oli vähintään 17 m/s. Sen jälkeen aineistosta laskettiin muutamia yksinkertaisia jakaumia. Seuraava vaihe oli poimia talteen voimakkaan tuulen päivämäärät ja laskea jenkkiläisen NCEPin uusanalyysitiedoista tilanteille keskimääräiset suuren mittakaavan sääolosuhteet.

 

"Kevo-myrskyjen" esiintyminen

Sitten itse tuloksiin. Koko aineistosta löytyi 104 mittausta, joissa havaintohetken keskituuli ylitti 17 m/s. Mittaukset eroteltiin omiksi tapauksikseen, joita kertyi 74 kappaletta. Niinpä todennäköisyys, että yksittäinen havainto ylittää 17 m/s rajan on Kevolla ainoastaan 0,0008%. Tämä tarkoittaa, että yhden vuoden aikana rajan ylittäviä mittauksia on tehty keskimäärin 2,3 kappaletta. Kyseessä on siis vuosittain toistuva tuulitapahtuma. Kannattaa huomioida, että eteläisessä Suomessa tuulennopeus 17 m/s (puuskat 25+ m/s) aiheuttaa todella pahoja vahinkoja, kuten nähtiin esimerkiksi Janika-myrskyssä 15.11.2001.

Tuulennopeudet ja kuukausijakauma

Jos tarkastellaan tuulennopeuksien frekvenssijakaumaa, nähdään ennalta odotettu äkisti laskeva tapausten määrä suuria nopeuksia kohti mentäessä. Tapausten kuukausijakaumakaan ei juuri yllätä, koska maksimi osuu talvikuukausille. Säähäiriöt ovat talvella voimakkaimpia ja niinpä on yleisesti tunnettu fakta, että näillä leveyksillä puhaltaa rajuimmin talvella. Merialueiden myrskypäivien kuukausijakaumaan verrattuna havaitaan kuitenkin, että "Kevo-myrskyjen" sesonki ajoittuu lähemmäksi kevättä. Kuten kuva osoittaa, tapauksia on ollut eniten helmikuussa. Tämä saattaa liittyä tilanteelle otollisiin suuren mittakaavan säätilanteisiin, joista on kerrottu enemmän alla.

Tuulensuunnat

Tilanteista tehty tuuliruusu sen sijaan antaa todella ronskin signaalin. Peräti 92% tapauksista sattuu tuulensuunnille 285-345 astetta (länsiluode-pohjoisluode) eikä suunnilla 15-225 astetta (pohjoiskoillinen-lounas) ole yhtään ainoaa tapausta. Yleisesti tunnettua on myös se, että "yleinen" tuuliruusu painottuu meidän leveysasteilla etelän ja lounaan välille. Nämä faktat yhdessä antavat siis vihiä, että ainakin Kevolla voimakkaiden tuulien taustalla saattavat olla paikallisolosuhteet.

Keskimääräinen suursäätila

Lisää mielenkiintoisia tuloksia saadaan, kun syötetään "Kevo-myrskyjen" päivämäärät numeerisessa uusanalyysitiedossa keskiarvoistettaviksi. Alla on esitetty animaatioita, jotka kuvaavat keskimääräisiä virtausoloja noin 5 km korkeudessa sekä maanpinnalla. Lisäksi molemmilta korkeuksilta on esitetty poikkeamat ilmastollisesta keskiarvosta. Animaatiot alkavat 5 vuorokautta ennen tilannetta valinneesta suursäätilasta ja loppuvat myrskypäivään.

 

Ensimmäisestä animaatiosta nähdään, että noin 5 kilometrin korkeudella (500 hPa) on vahva (ylä)korkeapaineenselänne, joka vahvistuu myrskypäivän lähestyessä kohti länttä ja luodetta. Samalla yläsola kaivautuu kohti etelää Suomen itäpuolelle. Meteorologin kielellä ilmaistuna, animaatiossa näyttäisi tapahtuvan epäjatkuva retrogressio, jossa vahva yläselänne pakittaa länteen. Yläselänne tulee kauniisti esiin myös poikkeama-animaatiossa, jossa on vahva positiivinen poikkeama Fennoskandiassa ja sen länsipuolella. Vastaavasti negatiiviset poikkeamat ovat kauempana Atlantilla sekä toisaalta Venäjän pohjoisosassa. Myös tästä nähdään, kuinka positiivisen poikkeaman painopiste hivuttautuu kohti länttä ja samalla negatiivinen poikkeama vaeltaa kohti Kuolan niemimaata.

Jos tehdään vastaava tarkastelu merenpintaan redukoidulle ilmanpaineelle, nähdään odotusten mukaisesti samoja tapahtumia. Keskimääräisolosuhteita kuvaavassa animaatiossa korkeapaine ulottuu aluksi kaukaa Aasiasta Keski-Eurooppaan, mutta tapahtumapäivän lähestyessä korkeapaine pullistaa selänteen kohti luodetta. Samalla matalapaine valahtaa Jäämereltä Suomen itäpuolitse etelään. Tämä asetelma on toki arvattavissa jo edellä esitetyn tuuliruusun perusteellakin. Poikkeama-animaatio osoittaa vahvan positiivisen ilmanpainepoikkeaman siirtyvän hiljalleen länteen ja luoteeseen samalla kuin negatiivinen poikkeama liikkuu Jäämereltä etelään. Huomionarvoista on, että positiivinen poikkeama on aluksi selvästi vahvempi kuin negatiivinen. Samaa koskee myös tilannetta 5 km korkeudella.

Asema ja sen ympäristö

Ennen loppuyhteenvedon tekemistä on syytä kurkata, minkälaisessa tuulitunnelissa Kevon mittarit oikein makaavat. Ilmatieteen laitoksen virallisessa asemakuvauksessa todetaan muun muassa seuraavaa: "Asema sijaitsee pohjois-etelä -suuntaisen Utsjoen-Kevojoen kanjonissa, koillisrinteen tasanteella. Pohjoisen suunnalla (n. 360 astetta) joki jatkuu samansuuntaisena n. 15 km, etelän suunnalla (n. 160 astetta) vain n. 4 km. Muissa ilmansuunnissa on tuntureita tai vaaroja, joista korkeimmat 350-400 m mpy. Kevojärvi ympäröi kuitenkin 100-200 m päässä asemasta n. 1 km matkalta muissa ilmansuunnissa paitsi lounaassa (sektori 180-250 astetta)." Saman karttamuodossa voi todeta vaikkapa Kansalaisen Karttapaikan tiedoista.

Mitä opimme tästä?

Yllä olevan perusteella pystytään päättelemään tai spekuloimaan Kevon hurjista tuulista ainakin seuraavaa:

  • Erittäin voimakkaat, ajoittain jopa myrskyisät tuulet ovat jokavuotisia Kevolla.
  • Voimakkaiden tuulien suuntajakauma on erittäin kapea, 92% tapauksista on sektorissa 285-345 astetta. Tähän vaikuttanee suuresti myös lähialueen topografia (pohjois-eteläsuuntainen kanjoni ja luoteen ja pohjoisen suunnassa pitkä järvenselkä).
  • Voimakkaisiin tuuliin johtaneita säätilanteita edeltää Suomen lounaispuolella oleva vahva sulkukorkeapaine, joka siirtyy myrskypäivän lähestyessä kohti länttä tai luodetta. Samalla Jäämerellä oleva matalapaine liukuu Suomen itäpuolitse kohti etelää.
  • 3-5 vuorokautta ennen voimakkaita tuulia lounaista korkeapainetta ja sen siirrosta länteen voi pitää Jäämeren matalaa varhaisempana ennusmerkkinä kyseisen tilanteen syntymiselle. Tästä kertoo mm. se, että positiivinen painepoikkeama on negatiivista vahvempi ja fokusoituneempi.
  • Negatiivisen painepoikkeaman laajuus voi merkitä, että myrskymatalan siementä täytyy etsiä laajalta alueelta Jäämereltä. Keskus voi lähteä kehittymään jopa Novaja Zemljan takana Venäjän pohjoisrannikolla.
  • Kovien tuulten esiintymishuipun myöhäisyys (helmikuun maksimi) saattaa liittyä sulkukorkeapaineiden yleistymiseen vuodenvaihteen jälkeen. Tämä jää kuitenkin käsien heiluttelun tasolle, koska minulla ei ollut aikaa etsiä tähän sopivaa referenssiä.

Lopuksi täytyy korostaa, että tämän pöytälaatikkotutkimuksen tulokset eivät ole yleistettävissä muualle Pohjois-Lappiin saati Keski- tai Etelä-Lappiin. Yleisten linjojen vetäminen vaatisi useamman aseman mittausten tutkimista. Kokemus Pohjois-Lapin myrskyistä on kuitenkin näyttänyt, että samanaikaisesti Kevon kanssa myös muilla alueen asemilla mitataan eteläsuomalaisittain hurjia tuulia. Toistaiseksi jääkin ilmaan kysymys, kuinka vääristynyt mm. Kevon tuuliruusu todella on vai onko se totuus myös muualla Suomen "tundralla".

Loppukommentti

Mikäli joku jaksoi lueskella tarinan loppuun asti, olisi mukava kuulla kommentteja tämän pikkututkielman tuloksista tai yleensä tämäntapaisten kirjoitusten julkaisemisesta. Allekirjoittaneen kannalta työ oli todellinen piristysruiske haudanvakavaan tieteentekoon ja aion ehdottomasti jatkaa samalla linjalla, jos vaan aikaa suinkin löytyy. Tätä tehdessä tuli jo ajatuksia uusista aiheista ja otan niitä mieluusti vastaan myös tämän blogin kautta.